Interactions of cis- $\mathrm{P}_{2} \mathrm{PtX}_{2}$ Complexes ($\mathrm{X}=\mathrm{H}, \mathrm{CH}_{3}$) with Bis(pentamethylcyclopentadienyl)ytterbium

David J. Schwartz, Graham E. Ball, and Richard A. Andersen*
Contribution from the Chemistry Department and Chemical Sciences Division of Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Received December 6, 1994^{\star}

Abstract

The interactions formed in solution between the bent lanthanide metallocene $\mathrm{Cp}^{*}{ }_{2} \mathrm{Yb}(\mathbf{1})$ and cis $-\mathrm{P}_{2} \mathrm{PtX} 2$ complexes ($\mathrm{P}_{2}=$ a chelating phosphine; $\mathrm{X}=\mathrm{H}, \mathrm{CH}_{3}$) have been investigated using NMR spectroscopy. 1 has been found to form a significant interaction with the cis dihydride complexes [$\left.(\mathrm{Cy})_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{P}(\mathrm{Cy})_{2}\right] \mathrm{PtH}_{2}(n=2$, dcype, 4; $n=3$, dcypp, 6). Intermolecular exchange is slow on the NMR time scale for a $1: 1$ sample of 1 and 4 , and there are significant perturbations in the spectral values from those of free 4. Additionally, ${ }^{1} J_{\mathrm{YbH}}$ of 180 Hz and J_{PtYb} of 2260 Hz are present. A sample of 1 and 6 gives almost identical spectral values. Fast intermolecular exchange (NMR) occurs for samples containing an excess of the dihydride complexes but not for samples containing an excess of 1. The NMR values of a $1: 1$ sample of the dimethyl complex $($ dippe $) \mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}\left(\right.$ dippe $\left.=\left({ }^{\mathrm{i}} \mathrm{Pr}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\left({ }^{\mathrm{i}} \mathrm{Pr}\right)_{2}\right)(8)$ and $\mathbf{1}$ are perturbed from the analogous values for free 8, but fast intermolecular exchange is present on the NMR time scale down to $-90^{\circ} \mathrm{C}$. The solid-state structure of this adduct, 9 , shows a rare mode of an agostic bridging methyl interaction; however, ${ }^{1} J_{\mathrm{CH}_{3}}$ is unchanged from that of 8 . Crystal data for 9 : monoclinic, space group $C 2 / c$, with $a=33.90(2) \AA, b=11.255(6) \AA, c=20.535(6) \AA, \beta=98.41(4)^{\circ}, V=7750(7) \AA^{3}, Z=8$, final $R=0.029$ for 361 variables, and 3300 data with $I>3 \sigma(I)$. A $1: 1$ sample of 1 and a methyl hydride complex, (dippe) $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)$ (H) (10) undergoes slow exchange in solution, with ${ }^{1} J_{\mathrm{YbH}}$ of 168 Hz and J_{Pr} of 960 Hz . Again ${ }^{1} J_{\mathrm{CH}_{3}}$ is unchanged from that of free 10. The $\mathrm{Yb}-\mathrm{CH}_{3}$ interaction likely arises from geometrical constraints, the Yb -hydride interaction holding the Yb center near the methyl group. The solid-state structure of this adduct, 11, shows an asymmetric $\left(\mu-\mathrm{CH}_{3}\right)(\mu-\mathrm{H})$ bridge. Crystal data for 11: monoclinic, space group $P 2_{1} / c$, with $a=18.778(5) \AA, b=10.903(4) \AA$, $c=20.255(5) \AA, \beta=114.74(2)^{\circ}, V=3766(2) \AA^{3}, Z=4$, final $R=0.069$ for 327 variables, and 4694 data with $I>3 \sigma(I)$. The NMR perturbations and coupling constants resulting from the interactions of 1 with the $\mathrm{P}_{2} \mathrm{PtX} 2$ complexes are discussed in detail and correlated with the solid-state structures. The ${ }^{195} \mathrm{Pt}$ and ${ }^{171} \mathrm{Yb}$ chemical shifts of 1 , the $\mathrm{Pt}(\mathrm{II})$ complexes, and the $1: 1$ adducts are also reported.

Introduction

The metallocene $\mathrm{Cp}^{*}{ }_{2} \mathrm{Yb}$ has a bent sandwich strucutre in the gas phase, with a centroid- Yb -centroid angle of 158° in the thermal average structure. ${ }^{1}$ One consequence of this bent geometry is that the enthalpy of adduct formation does not have to compensate for the reorganization energy of bending, making $\mathrm{Cp}^{*}{ }_{2} \mathrm{Yb}$ an excellent candidate for examining weak metalligand bonding. This closed-shell ($4 f^{14}$ electron configuration) Lewis acid can be used to study the solid-state geometrical changes that occur upon adduct formation, and this has been informative, particularly when coordination complexes are formed with ligands that are not generally viewed as good ligands for f-block metals. For example dimethylacetylene forms an adduct with $\mathrm{Cp}^{*}{ }_{2} \mathrm{Yb}$ in which the acetylene is η^{2-} bound, with bond distances and angles that are essentially unchanged relative to those of the free ligand. ${ }^{2 a}$ A similar result is apparent in the solid-state structure of $\left[\left(\mathrm{CH}_{3}\right)_{4} \mathrm{EtC}_{5}\right]_{2} \stackrel{\mathrm{YbC}}{ }$

[^0]$\left[\mathrm{N}\left(\mathrm{CH}_{3}\right) \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{N}\left(\mathrm{CH}_{3}\right)\right] .{ }^{2 b}$ In the unusual adduct with $\mathrm{Cp} * \mathrm{Be}\left(\mathrm{CH}_{3}\right)$, the $\mathrm{Be}\left(\mathrm{CH}_{3}\right)$ moiety coordinates to $\mathrm{Cp}{ }_{2} \mathrm{Yb}$ in a linear $\mathrm{Yb}-\mathrm{C}-\mathrm{Be}$ fashion, such that there are short $\mathrm{Yb}-\mathrm{H}$ distances. ${ }^{2 c}$ Similar interactions, with short $\mathrm{Yb}-\mathrm{H}$ distances, are found in the solid-state structure of $\mathrm{Cp}^{*}{ }_{2} \mathrm{Yb}\left(\mu-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Pt}$ $\left(\mathrm{PPh}_{3}\right)_{2}{ }^{2 \mathrm{~d}}$ though the other structural features are essentially unchanged relative to the uncomplexed fragments. Since the solid-state geometrical changes are small in these adducts, it is not surprising that in solution there is a small barrier to dissociation into their individual fragments; these complexes exhibit rapid intermolecular exchange on the NMR time scale at all temperatures. As a consequence, only average spectroscopic values for these and related molecules ${ }^{3}$ are known.

Bis(pentamethylcyclopentadienyl)ytterbium is potentially an ideal Lewis acid for exploring the kinetics and thermodynamics of weak metal-ligand bonding by NMR spectroscopy, if compounds can be prepared for which intermolecular exchange is slow on the NMR time scale. This is due to the facts that the coordination complexes are diamagnetic and ${ }^{171} \mathrm{Yb}(14.3 \%$ natural abundance) has a nuclear spin of $1 / 2$. The presence or absence of spin-spin coupling can be used to judge whether chemical exchange is occurring. ${ }^{4}$ The perturbations in the NMR

[^1]spectral values as well as the presence and size of coupling to ${ }^{171} \mathrm{Yb}$ can give information concerning the nature of the interactions in solution. The other readily available bivalent lanthanide metallocenes, $\mathrm{Cp}{ }_{2} \mathrm{Sm}$ and $\mathrm{Cp}{ }_{2} \mathrm{Eu}$, do not have NMR-active nuclei with $I=1 / 2$, and they are paramagnetic. ${ }^{5}$ The paramagnetic shift induced by $\mathrm{Cp}^{*}{ }_{2} \mathrm{Eu}$ has been used to study weak metal-ligand bonding in an indirect way. ${ }^{6}$ The recent report that spin-spin coupling was observed between ytterbium and hydrogen in d-transition metal hydride anions ${ }^{7}$ indicates that the hydride ligand might be a candidate for stopping intermolecular chemical exchange. In this manuscript, we describe the solution- and solid-state perturbations resulting from the Lewis acid-base interactions between $\mathrm{Cp}^{*}{ }_{2} \mathrm{Yb}$ and cis- $\mathrm{P}_{2} \mathrm{PtX}_{2}$ complexes, where $\mathrm{X}=\mathrm{H}$ and CH_{3}.

Results

Interaction with cis-[$\left.\mathbf{R}_{2} \mathbf{P}\left(\mathbf{C H}_{2}\right)_{\mathbf{2}} \mathbf{P R}_{2}\right] \mathbf{P t H}_{2}$. Addition of a colorless toluene solution of cis-[(Me $\left.\left.\mathrm{M}_{3} \mathrm{C}\right)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\left(\mathrm{CMe}_{3}\right)_{2}\right]-$ PtH_{2}, (dtbpe) PtH_{2} (2), ${ }^{8}$ to a brown toluene solution of $\mathrm{Cp}^{*}{ }_{2} \mathrm{Yb}$ (1) at room temperature results in the immediate precipitation of a maroon solid, formulated as (dtbpe) $\mathrm{Pt}(\mu-\mathrm{H})_{2} \mathrm{YbCp}_{2}$ (3), in quantitative yield. The solid-state infrared spectrum of this complex shows $\nu(\mathrm{M}-\mathrm{H})$ bands at 1925 and $1898 \mathrm{~cm}^{-1}$, shifted from the single broad absorption of $1988 \mathrm{~cm}^{-1}$ for 2 . While this shift to lower energy is characteristic of bridging Pt hydride ligands, it is a smaller perturbation then is generally observed, ${ }^{9}$ indicating that the Yb -hydride interactions are relatively weak. The adduct is completely insoluble in hexane, toluene, and diethyl ether. Although it dissolves in tetrahydrofuran $-d_{8}$ to give a maroon solution, the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data show that the solution contains free 2 and the known $\mathrm{Cp}^{*}{ }_{2} \mathrm{Yb}(\text { thf })_{2}$ adduct. ${ }^{10}$ Integration of the proton NMR spectrum of this sample shows that 3 is indeed a $1: 1$ adduct. The solubility properties of 3 precluded further study of this complex.

Allowing 1 to react with 1 equiv of $c i s-\left[(C y)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}\right.$ $\left.(\mathrm{Cy})_{2}\right] \mathrm{PtH}_{2}$, (dcype) PtH_{2} (4), in toluene gives a dark blue solution. Slow cooling of this solution to $-80^{\circ} \mathrm{C}$ gives dark maroon crystals of the $1: 1$ complex (dcype) $\mathrm{Pt}(\mu-\mathrm{H})_{2} \mathrm{YbCp}_{2}(\mathbf{5})$, in 75% yield. This complex shows a broad band at $1889 \mathrm{~cm}^{-1}$ in its solid-state infrared spectrum, shifted to lower energy relative to the $v(\mathrm{M}-\mathrm{H})$ bands for 4 , at 1986 and $1979 \mathrm{~cm}^{-1}$. Crystals of 5 , isolated from toluene, do not redissolve in toluene. Consequently, the NMR data discussed below were obtained on a sample that was made by dissolving 4 and a slight excess of 1 in $\mathrm{C}_{6} \mathrm{D}_{6}$. This sample will hereafter be referred to either as the $1: 1$ sample or simply as the complex 5.

The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 4 and the $1: 1$ sample, at $25^{\circ} \mathrm{C}$, are shown in Figure 1. In addition to the expected spin-spin coupling of the hydride nuclei to the two phosphorus nuclei and to the ${ }^{195} \mathrm{Pt}$ isotope $\left(I=\frac{1}{2}, 33.8 \%\right.$ natural abundance), coupling to ${ }^{171} \mathrm{Yb}$ is also present in the ${ }^{1} \mathrm{H}$ NMR spectrum of 5 (Figure $1 \mathrm{~b},{ }^{1} J_{\mathrm{Y} b \mathrm{H}}=180 \mathrm{~Hz}$). Coupling of the phosphorus nuclei to ${ }^{171} \mathrm{Yb}$ is also present (Figure 1 d , $J_{\mathrm{YbP}}=$

[^2]93 Hz), the intensity of each satellite being $c a .7 \%$ of the intensity of the major resonance, as expected. The presence of these couplings indicates that intermolecular exchange is slow on the NMR time scale, at $25^{\circ} \mathrm{C}$.
Interestingly, while intermolecular exchange does not occur at $25^{\circ} \mathrm{C}$ for a sample of $\mathbf{1}$ and $\mathbf{4}$ containing a slight excess of 1, this is not true for a sample containing an excess of 4. Fast intermolecular exchange is observed at $25^{\circ} \mathrm{C}$ on the NMR time scale, when 1 and 4 are mixed in a 1:2 molar ratio. The spectra show broadened resonances, coupling to ${ }^{171} \mathrm{Yb}$ is no longer observed, and the chemical shift and coupling constant values are averages of the stopped exchange values and the values for free 1 and 4. One possible rationalization of this result is that an associative exchange mechanism occurs when 4 is present in excess, the transition state involving interaction of an Yb center with one hydride ligand on each of two different molecules of 4, as shown in Figure 2. If the exchange mechanism were dissociative, the presence of excess 4 would have a negligible effect on the exchange rate; also, for a dissociative mechanism, the presence of excess 1 would be expected to result in fast exchange. Presumably, the steric bulk of the Cp^{*} rings prevents two molecules of 1 from simultaneously coordinating to one molecule of 4 (Figure 2), resulting in a higher barrier and therefore slow exchange behavior for a sample containing excess 1 .

In contrast to $\mathbf{3}$, dissolution of 5 in tetrahydrofuran- d_{8} does not result in complete cleavage of the $1: 1$ complex formed from 1 and 4. Rather, values intermediate between the stoppedexchange values of the $1: 1$ sample (in $\mathrm{C}_{6} \mathrm{D}_{6}$) and the values of free 4 in tetrahydrofuran $-d_{8}$ are observed, along with broadened resonances and loss of coupling to ${ }^{171} \mathrm{Yb}$, at $25^{\circ} \mathrm{C}$. Qualitatively, this indicates that 4 and thf are comparable Lewis bases, relative to the Lewis acid YbCp_{2} (keeping in mind that thf is present in large excess in this sample). The apparent relative basicity series is thf $\approx($ dcype $) \mathrm{PtH}_{2}(4)>($ dtbpe $) \mathrm{PtH}_{2}(2)$. This difference between 2 and 4 may be the result of steric effects. The dcype derivative possesses a proton on the α carbon of the cyclohexyl ring, while the dtbpe derivative has only methyl groups on this carbon; this may result in destabilizing steric interactions between 1 and 2 , as compared to the steric interactions formed between 1 and 4. Such differences in steric effects for dcype $v s$ dtbpe complexes have been reported. ${ }^{11}$
The ${ }^{1} \mathrm{H} /{ }^{195} \mathrm{Pt}$ and ${ }^{1} \mathrm{H} /{ }^{171} \mathrm{Yb}$ correlation 2-D spectra obtained on 5 at $25^{\circ} \mathrm{C}$ are shown in Figures 3 and 4, respectively. These spectra, and most of the other spectra obtained to measure metal chemical shifts and coupling patterns in this work, were obtained using the 2D-HMQC pulse sequence, ${ }^{12}$ which allows indirect detection of an X nucleus with ${ }^{1} \mathrm{H}$ sensitivity, utilizing a J_{XH} coupling. Couplings to ${ }^{1} \mathrm{H}$ are essentially removed in the X dimension. Equally important is the fact that couplings to a different type of nucleus, Y , in an $\mathrm{H}-\mathrm{X}$ correlation are independently retained in both dimensions, resulting in an E.COSY-like splitting pattern, ${ }^{13}$ with respect to the Y nucleus. Resolution of splittings into two dimensions allows easier identification of coupling constants found in lower intensity isotopomers (e.g., when $\mathrm{Y}={ }^{171} \mathrm{Yb}$), particularly when satellites due to these isotopomers would be obscured by other lines in the relevant 1-D spectra. A large splitting due to coupling to Y in one dimension may be used to resolve a small coupling to Y in the other dimension, even if this small coupling is less

[^3]

Flgure 1. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 4 and $5\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right)$; (a) ${ }^{1} \mathrm{H}$ spectrum of $4(300 \mathrm{MHz}$; a minor grease impurity is marked with an asterisk), (b) ${ }^{1} \mathrm{H}$ spectrum of 5 (300 MHz ; hydride region; a minor impurity is marked with an asterisk), (c) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of $\mathbf{4}$ (162 MHz), (d) ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum of $5(162 \mathrm{MHz})$.
than the line width in that dimension. Information about the relative signs of coupling constants may also be directly inferred from the direction of the slope in the E.COSY-like pattern.

In the case of 5 , the ${ }^{1} \mathrm{H} /{ }^{171} \mathrm{Yb}$ HMQC spectrum confirms that ${ }^{171} \mathrm{Yb}$ is the source of the extra satellites present in the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (Figure 1). In addition, the ${ }^{195} \mathrm{Pt}$ and ${ }^{171} \mathrm{Yb}$ pseudospectra (vertical dimensions in Figures 3 and 4, respectively) contain a triplet with ${ }^{195} \mathrm{Pt}$ satellites and a triplet with ${ }^{171} \mathrm{Yb}$ satellites, respectively (the triplets arise from coupling to the two phosphorus nuclei), showing that there is coupling
between the metal centers. The ${ }^{1} \mathrm{H} /{ }^{195} \mathrm{Pt}$ spectrum (Figure 4) shows that this coupling, J_{Ptyb}, has the same sign as ${ }^{1} J_{\mathrm{PtH}}$. The NMR spectral values measured on 5 are presented in Table 1, along with the values for 4 . Since the signs of ${ }^{1} J_{\mathrm{PH}}$ and ${ }^{1} J_{\mathrm{PTP}}$ are known to be positive, ${ }^{14}$ the signs of the other coupling constants can be obtained from the HMQC spectra and are shown in Table 1.

[^4]

Figure 2. Proposed exchange mechanism for a sample containing 1 with an excess of 4.

Figure 3. ${ }^{1} \mathrm{H} /{ }^{195} \mathrm{Pt} \mathrm{HMQC}$ NMR spectrum of $5\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, $25^{\circ} \mathrm{C}$). Annotated with normal ${ }^{1} \mathrm{H}$ spectrum (F2) and ${ }^{195} \mathrm{Pt}$ projection (F1).

Interaction of 1 with 4 results in several perturbations in the chemical shift and coupling constant values, compared with the values for uncomplexed 4. Specifically, a significant upfield shift of $\delta(\mathrm{Pt}-H)$ by 2.54 ppm occurs, indicating that the bridging hydrides of 5 are more shielded, relative to those of 4 . The Cp^{*} resonance of $\mathbf{1}$ is shifted downfield by 0.47 ppm ; downfield shifts of this resonance are common for $\mathrm{Cp}^{*} \mathrm{YbL}_{n}$ complexes, relative to the value for $1 .{ }^{2 a, d}$

The interaction between 1 and 4 results in a decrease in the ${ }^{2} J_{\mathrm{PH}}$ and ${ }^{1} J_{\mathrm{PH}}$ values and a large increase in the ${ }^{1} J_{\mathrm{PTP}}$ value. These perturbations are easily rationalized by assuming that donation of electron density from the Pt -hydride bonds to the acidic ytterbium metal center results in a decrease in the $\mathrm{Pt}-\mathrm{H}$ bond strength and a consequent decrease in the trans influence of the hydride ligands. Bridging hydride ligands in dimeric Pt phosphine complexes generally have a lower trans influence then terminal Pt hydrides. ${ }^{11,15}$ Consistent with the IR data for 5 (see above), the ${ }^{1} J_{\mathrm{PtH}}$ value for $5(1031 \mathrm{~Hz})$ is lowered from the value for free 4 but is still higher than is generally seen for bridging Pt hydrides, ${ }^{16}$ indicating that the Yb -hydride interac-

[^5]

Figure 4. ${ }^{1} \mathrm{H}^{177} \mathrm{Yb}$ HMQC NMR spectrum of $5\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 25\right.$ ${ }^{\circ} \mathrm{C}$). Annotated with normal ${ }^{1} \mathrm{H}$ spectrum (F 2) and ${ }^{171} \mathrm{Yb}$ projection (F1).

Table 1. ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$, ${ }^{195} \mathrm{Pt}$, and ${ }^{171} \mathrm{Yb}$ NMR Data for 4 and $5\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $25^{\circ} \mathrm{C}$)

	$\mathbf{4}$	$\mathbf{5}$
$\delta(\mathrm{Pt}-H), \mathrm{ppm}$	0.56	-1.98
${ }^{2} J_{\mathrm{PH}}($ trans,$c i s), \mathrm{Hz}$		
${ }^{1} \mathrm{P}_{\mathrm{PH}}, \mathrm{Hz}$	$+179,-16$	$+152,-14$
$\delta(\mathrm{P}), \mathrm{ppm}$	+1100	+1031
$J_{\mathrm{PR}}, \mathrm{Hz}$	76.5	75.4
$\delta(\mathrm{CP} *), \mathrm{ppm}$	+1822	+2077
$J_{\mathrm{YbH}}, \mathrm{Hz}$	b	2.42
$J_{\mathrm{YYP}}, \mathrm{Hz}$		+180
$\delta(\mathrm{Pt}), \mathrm{ppm}^{c}$		+93
$\delta(\mathrm{Yb}), \mathrm{ppm}^{c}$	-862	-751
$J_{\mathrm{YbP}}, \mathrm{Hz}$	-50^{d}	+572

${ }^{a}$ Unless otherwise stated, J_{XH} pertains to the coupling constant involving the nucleus X and the hydride nuclei in all of the tables. ${ }^{b}$ The chemical shift for the $\mathrm{Cp} *$ protons for a $\mathrm{C}_{6} \mathrm{D}_{6}$ sample of 1 is 1.93 ppm . ${ }^{\text {c }}$ For details of the metal chemical shift referencing, see the Experimental Section. ${ }^{d}$ The ${ }^{177} \mathrm{Yb}$ chemical shift for 1 , measured at $+60^{\circ} \mathrm{C}$ using direct detection ($w_{1 / 2}=100 \mathrm{~Hz}$).
tion is relatively weak. Interaction of 1 with the H / D analogue of 4 , (dcype) $\mathrm{Pt}(\mathrm{H})(\mathrm{D})$, shows no sign of ${ }^{1} J_{\mathrm{HD}}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum; the half-height width of the resonances is $c a .15 \mathrm{~Hz}$, indicating that J_{HD} is less then ca .8 Hz . The ${ }^{1} J_{\mathrm{HD}}$ value for free (dcype) $\mathrm{Pt}(\mathrm{H})(\mathrm{D})$, at $25^{\circ} \mathrm{C}$ and at $-80^{\circ} \mathrm{C}$, was found to be near zero. ${ }^{17}$
There have been few J_{YbH} and J_{YbP} values reported in the literature; the values measured on 5 are similar to the previously reported values. The J_{YbH} value of 180 Hz found for 5 can be compared to the values of 170 Hz for $\left[\left\{\mathrm{CpNb}(\mu-\mathrm{H})_{2}\right\}_{2} \mathrm{Yb}-\right.$ (diglyme) $]^{7}$ and 200 Hz for $\left[\left(\mathrm{Tp}^{\prime}\right) \mathrm{Yb}\left(\mu-\mathrm{HBEt}_{3}\right)(\mathrm{thf})\right]\left(\mathrm{Tp}^{\prime}=\right.$ hydrotris(3-tert-butyl-5-methylpyrazolyl)borate). ${ }^{18}$ The ${ }^{3} J_{\mathrm{YbP}}$ value of 93 Hz in 5 is similar to the value of 73 Hz found for
(16) (a) Naegeli, R.; Togni, A.; Venanzi, L. M. Organometallics 1983, 2, 926. (b) Boron, P.; Musco, A.; Venanzi, L. M. Inorg. Chem. 1982, 21 , 4192.
(17) It has been reported that $\left(\mathrm{Cy}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{PCy}_{2}\right) \mathrm{PtH}_{2}(n=3$, 4) complexes show evidence for η^{2}-dihydrogen behavior, based on variable temperature ${ }^{1} \mathrm{H}$ NMR spectroscopy: Clark, H. C.; Hampden-Smith, M. J. J. Am. Chem. Soc. 1986, 108, 3829.
(18) Hasinoff, L.; Takats, J.; Zhang, X. W.; Bond, A. H.; Rogers, R. D. J. Am. Chem. Soc. 1994, 116, 8833.
$\left[\left\{\left(\mathrm{PMe}_{3}\right)_{3} \mathrm{WH}_{5}\right\}_{2} \mathrm{Yb}\right.$ (diglyme) $],{ }^{7}$ in which the $\mathrm{P}-\mathrm{Yb}$ coupling is via a $\mathrm{P}-\mathrm{M}-\mathrm{H}-\mathrm{Yb}$ interaction, as in 5 (assuming that direct $\mathrm{Pt}-\mathrm{Yb}$ spin-spin communication is negligible, this will be discussed below).

The ${ }^{171} \mathrm{Yb}$ chemical shift of a sample of 1 dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ is $-50 \mathrm{ppm}\left(w_{1 / 2}=100 \mathrm{~Hz}\right)$, at $+60^{\circ} \mathrm{C}$. This is similar to the values reported for $\mathrm{Cp}^{*}{ }_{2} \mathrm{Yb}(\text { thf })_{2}(0 \mathrm{ppm})$ and $\mathrm{Cp}^{*}{ }_{2} \mathrm{Yb}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2}$ $(+36 \mathrm{ppm})$, both measured at $25^{\circ} \mathrm{C}$. ${ }^{4 \mathrm{~b} .19}$ The $\delta(\mathrm{Yb})$ value of +572 ppm found for 5 at $25^{\circ} \mathrm{C}$ indicates a significantly deshielded ytterbium metal center, relative to that in 1. Given the few examples of ${ }^{171} \mathrm{Yb}$ chemical shift values reported to date for $\mathrm{Cp}^{*}{ }_{2} \mathrm{YbL}{ }_{n}$ complexes, ${ }^{4 \mathrm{~b} .20}$ the wide variation in these values, and the presence of fast intermolecular exchange of L on the NMR time scale for many of these complexes (the complexes reported in this paper being rare examples of stoppedexchange $\mathrm{Cp}_{2} \mathrm{YbL}_{n}$ complexes), a correlation of ${ }^{171} \mathrm{Yb}$ chemical shifts with chemical properties is not yet possible. The ${ }^{195} \mathrm{Pt}$ chemical shift of $5(-751 \mathrm{ppm})$ is shifted downfield from the value for 4 (-862 ppm), consistent with less electron density on the platinum center in the adduct. Considering the very large range of platinum chemical shifts (ca. 13000 ppm), ${ }^{4 \mathrm{a}}$ this is not a large perturbation. The $\mathrm{Pt}-\mathrm{Yb}$ coupling constant, 2260 Hz , is the first transition metal-ytterbium coupling constant to be reported, and so no comparisons can be made. However, it is clear that there is communication between the metal nuclear spins; this will be discussed in more detail below.

To verify the nature of the Lewis acid-base interaction between 1 and 4, a single crystal X-ray diffraction study was performed on 5. Unfortunately, the crystal was severely disordered, and only the Yb, Pt, the two P atoms, and rough Cp^{*} ring centroid positions could be located (see the supplementary material for crystallographic details). While the atomic positions have relatively large esd's associated with them, some useful information can nevertheless be obtained. The heavyatom positions are consistent with a symmetrical $\mathrm{Pt}(\mu-\mathrm{H})_{2} \mathrm{Yb}$ structure, with $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{Yb}=143(1)^{\circ}, \mathrm{P}(2)-\mathrm{Pt}-\mathrm{Yb}=$ $137(2)^{\circ}$, and the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ plane oriented roughly perpendicular to the (Cp * ring centroid) $-\mathrm{Yb}-\left(\mathrm{Cp}^{*}\right.$ ring centroid) plane, the interplanar angle being $86(2)^{\circ}$. The $\mathrm{Pt}-\mathrm{Yb}$ distance, $3.264(6)$ \AA, is $0.25 \AA$ longer than the sum of the covalent radii (the covalent radii of $\mathrm{Pt}(\mathrm{II})$ and Yb (II) are 1.31^{21} and $1.70 \AA,{ }^{22}$ respectively), indicating that the J_{PYYb} coupling observed in solution is likely not via a direct $\mathrm{Pt}-\mathrm{Yb}$ interaction. This $\mathrm{Pt}-$ Yb distance is similar to the $\mathrm{W}-\mathrm{Yb}$ separation found for $\left[\left\{\left(\mathrm{PMe}_{3}\right)_{3} \mathrm{WH}_{5}\right\}_{2} \mathrm{Yb}\right.$ (diglyme) $](3.24 \AA)$ and to the $\mathrm{Nb}-\mathrm{Yb}$ separation found for $\left[\left\{\mathrm{CpNb}(\mu-\mathrm{H})_{2}\right\}_{2} \mathrm{Yb}(\right.$ diglyme $\left.)\right](3.33 \AA)$ (the van der Waals radii of W and Nb are 1.35 and $1.45 \AA$, respectively). ${ }^{7}$ There has been one previous report of a complex containing both Yb and Pt centers; the $\mathrm{Pt}-\mathrm{Yb}$ separation in this complex, $\left[\left\{\mathrm{Yb}(\text { thf })_{2}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)_{2} \mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}\right\}\right.$ (thf $\left.)\right]$, is $5.01 \AA .{ }^{23}$

Interaction with cis $\left[(\mathbf{C y})_{2} \mathbf{P}\left(\mathbf{C H}_{2}\right)_{3} \mathbf{P}(\mathbf{C y})_{2}\right] \mathbf{P t H} \mathbf{H}_{2}$. The energies of the frontier orbitals of a $\mathrm{P}_{2} \mathrm{Pt}$ fragment change as the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle is varied. ${ }^{24}$ Specifically, the energy of the $\mathrm{P}_{2} \mathrm{Pt}$ HOMO, largely of $\mathrm{d}\left(x^{2}-y^{2}\right)$ character, rises as this angle becomes more acute. Thus, as this angle changes, the Lewis basicity of the hydride ligands of a cis $-\mathrm{P}_{2} \mathrm{PtH}_{2}$ complex would

[^6]Table 2. ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P},{ }^{195} \mathrm{Pt}$, and ${ }^{171} \mathrm{Yb}$ NMR Data for 6 and $7\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$, $25^{\circ} \mathrm{C}$)

	$\mathbf{6}$	$\mathbf{7}$
$\delta(\mathrm{Pt}-H), \mathrm{ppm}$	-1.13	-3.45
${ }^{2} J_{\mathrm{PH}}($ trans, cis $), \mathrm{Hz}$	$+174,-24$	$+148,-21$
$J_{\mathrm{PtH}}, \mathrm{Hz}$	+1069	+993
$\delta(\mathrm{P}), \mathrm{ppm}$	21.6	15.8
${ }^{1} J_{\mathrm{PtP}}, \mathrm{Hz}$	+1897	+2090
$\delta(\mathrm{Cp} *), \mathrm{ppm}$		2.44
${ }^{1} J_{\mathrm{YbH}}, \mathrm{Hz}$	+168	
$J_{\mathrm{YbP}}, \mathrm{Hz}$		+82
$\delta(\mathrm{Pt}), \mathrm{ppm}$		-749
$\delta(\mathrm{Yb}), \mathrm{ppm}$	-861	+472
$J_{\mathrm{PtYb}}, \mathrm{Hz}$		+2160

be expected to change. Accordingly, we thought it would be interesting to investigate the interaction of 1 with $\mathrm{cis}-\left[(\mathrm{Cy})_{2} \mathrm{P}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{P}(\mathrm{Cy})_{2}\right] \mathrm{PtH}_{2}$, (dcypp) $\mathrm{PtH}_{2}(6) .{ }^{17.25}$ The $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angles in (dcype) PtH_{2} and (dcypp) PtH_{2} are ca. $87^{\circ} 26$ and $103^{\circ},{ }^{27}$ respectively. The NMR spectra of a sample containing a ca. 1:1 molar ratio of 1 and 6 (with a slight excess of 1) indicate that intermolecular exchange is slow on the NMR time scale, at $25^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra, as well as the ${ }^{1} \mathrm{H} /{ }^{195} \mathrm{Pt}$ and ${ }^{1} \mathrm{H}{ }^{171} \mathrm{Yb}$ HMQC spectra (available as supplementary material), were measured on this adduct, 7 , and the spectral values obtained are given in Table 2, along with the values for 6.

Comparing the perturbations resulting from the interaction of 1 with 6 to the perturbations that were observed for 4 (Table 1) shows that they are almost identical. Apparently the interaction between cis- $\mathrm{P}_{2} \mathrm{PtH}_{2}$ complexes and 1 is not significantly affected by a change in the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ angle. The two cis dihydride complexes, 4 and 6 , also behave similarly with respect to intermolecular exchange with 1. As found for 4 , an excess of 6 results in averaged spectra, while an excess of 1 does not. The ${ }^{171} \mathrm{Yb}$ chemical shift for 7 is +472 ppm , the analogous value for 5 is +572 ppm ; the reason for this difference, and whether it is chemically significant, is unknown. Again, the signs of the coupling constants can be determined and are given in Table 2; the signs are the same as was found for the analogous values for 5 .
Interaction with cis $-\left[\left({ }^{(} \mathbf{P r}\right)_{2} \mathbf{P}\left(\mathbf{C H}_{2}\right)_{2} \mathbf{P}\left({ }_{(}{ }^{(P r}\right)_{2}\right] \mathbf{P t}\left(\mathbf{C H}_{3}\right)_{2}$. Considering the relatively strong interactions formed between 1 and cis $-\mathrm{P}_{2} \mathrm{PtH}_{2}$ complexes, we wondered whether substitution of the hydrides by methyl groups would result in a similar interaction between the two complexes, via bridging methyl groups. The exact nature of the bridging methyl interactions is interesting, specifically whether the methyl groups interact with the Yb center via the carbon atoms ($\mathrm{M}-\mathrm{C}-\mathrm{M}^{\prime}$ three-center/twoelectron interactions), the electron density in the $\mathrm{C}-\mathrm{H}$ bonds (agostic interactions), or a combination of these two possibilities. Perhaps most interesting is the nature of the interaction in solution, as measured by the methyl-related NMR spectral values, assuming that intermolecular exchange is slow. The dippe analogue, $\left.\left[{ }^{(} \mathrm{Pr}\right)_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{P}\left({ }^{(} \mathrm{Pr}\right)_{2}\right] \mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}(8)$, was used instead of the dcype derivative, since it crystallizes more readily (the dcype derivative was found to give qualitatively identical NMR spectra as 8 , when combined with 1).

The complex (dippe) $\mathrm{Pt}\left(\mu-\mathrm{CH}_{3}\right)_{2} \mathrm{YbCp}^{*}{ }_{2}(9)$ is dark green, in contrast to the maroon color of the dihydride complexes.

[^7]Table 3. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR Data for 8 and $9\left(\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right)$

	$\mathbf{8}$	9
$\delta\left(\mathrm{Pt}-\mathrm{CH} H_{3}\right), \mathrm{ppm}$	1.23	0.68
${ }^{2} \mathrm{JPCH}_{3}, \mathrm{~Hz}$	68	66
$\delta\left(\mathrm{CH}_{3}\right)$	18.1	18.0
${ }^{1} J_{\mathrm{PtC}}^{3}$		

${ }^{a}$ The uncertainty in these values is estimated at $\pm 1 \mathrm{~Hz}$.
Crystals of 9 easily dissolve in toluene (giving a dark green solution), in contrast to the behavior observed for 5 . The room temperature NMR values measured on a sample of 1 and 8 (containing a slight excess of 1) are shown in Table 3. Intermolecular exchange is rapid on the NMR time scale for this sample. While the intermediate exchange regime can be reached at $c a .-95^{\circ} \mathrm{C}$ in toluene- d_{8} (indicated by the presence of broad but distinct resonances for both free and bound $\mathrm{Cp}{ }^{*}$ rings), further cooling to $-110^{\circ} \mathrm{C}$ to try to stop the exchange results in resonances that are too broad to permit the measurement of any coupling constant values $\left({ }^{1} \mathrm{H}\left(w_{1 / 2}\right)=c a .120 \mathrm{~Hz}\right) .{ }^{28}$ The directions of the perturbations of the spectral values of 9 , relative to those of 8 , are similar to those observed for the dihydride complexes discussed above; however, the extents of the changes are less (Tables 1-3). In the hope of gaining some information concerning the nature of the bridging methyl interaction, the (averaged) $\mathrm{C}-\mathrm{H}$ coupling constant was measured at $25^{\circ} \mathrm{C}$. The values obtained for $\mathbf{8}$ and 9 are identical within experimental error; this value is also unchanged at $-80^{\circ} \mathrm{C}$. The chemical shift of the methyl carbon nuclei of 9 is also unperturbed, relative to the analogous value for 8 (Table 3). Apparently, the interaction between 1 and 8 in solution is too weak to allow investigation of the methyl -Yb interactions via NMR spectroscopy. No low-frequency $\mathrm{C}-\mathrm{H}$ stretches are present in the solid-state infrared spectrum of 9.29

To gain more information about the details of the Pt -$\mathrm{CH}_{3}--\mathrm{Yb}$ interactions, a single-crystal X-ray diffraction study was performed on 9. The solid-state structure is shown in Figure 5. This is the first crystallographically characterized complex containing bridging methyl groups between a transition metal and an f-element center. The crystallographic data (Table 4), positional parameters (Table 5), and selected bond distances and angles (Table 6) are presented. Five of the six bridging methyl hydrogens were located from a difference Fourier map, near the end of the structure refinement. The sixth hydrogen, H 2 C , was added assuming an idealized bonding geometry around C 2 (tetrahedral, $d(\mathrm{C}-\mathrm{H})=0.95 \AA$). These atoms were included in the structure factor calculation but not refined. Inclusion of these six hydrogens resulted in a slight improvement in the model, providing confirmation of their positions.

The heavy-atom bonding parameters of 9 are not unusual. The $\mathrm{Pt}-\mathrm{Yb}$ separation, 4.0391 (5) \AA, is $0.78 \AA$ longer than the analogous value in 5 . As expected, the methyl groups are symmetrically bridging, with $\mathrm{Pt}-\mathrm{C}(1)-\mathrm{Yb}=106.8(3)^{\circ}$, $\mathrm{Pt}-$

[^8]

Figure 5. ORTEP diagram of (dippe) $\mathrm{Pt}\left(\mu-\mathrm{CH}_{3}\right)_{2} \mathrm{YbCp}_{2}(9)$ with 50% probability thermal ellipsoids, except for hydrogens.

Table 4. Crystallographic Data for (dippe) $\mathrm{Pt}\left(\mu-\mathrm{CH}_{3}\right)_{2} \mathrm{YbCp}_{2}$ (9)

chem form	$\mathrm{P}_{2} \mathrm{PtYbC}_{36} \mathrm{H}_{68}$
mol wt	931.02
crystal size (mm)	$0.56 \times 0.20 \times 0.17$
$T,{ }^{\circ} \mathrm{C}$	-125
space group	$C 2 / c$
a, \AA	$33.90(2)$
b, \AA	$11.255(6)$
c, \AA	$20.535(6)$
β, deg	$98.41(4)$
V, \AA^{3}	$7750(7)$
Z	8
$d($ calcd $), \mathrm{g} \mathrm{cm}^{-3}$	1.596
$\mu($ calcd $), \mathrm{cm}^{-1}$	61.4
reflns measd	$h, \pm k,+l$
2θ range	$3-40^{\circ}$
no. of reflns colld,	8420
max correln for cryst decay	2.7% on F
absn corrn	
no. of atoms in least squares	$T_{\max }=1.23, T_{\min }=0.825$
no. of unique rflns	40
no. of reflns with $I>3 \sigma(I)$	3300
p factor	6159
no. of params	0.03
R^{b}	361
R_{w}	0.0288
$R_{\text {all }}$	0.0338
$G O F$	0.0288
diff Fourier (e $\AA \AA^{-3}$)	1.168

${ }^{a}$ The program DIFABS ${ }^{30}$ was used for the absorption correction. ${ }^{b}$ The definitions for R and R_{w} are as follows: $R=f\left(\Sigma| | F_{0} \mid-\right.$ $\left.\left|F_{c}\right|\left|, \sum\right| F_{0} \mid\right) ; R_{w}=r\left(f\left(\sum w\left(\left|F_{0}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)^{2}, \sum w F_{0}^{2}\right)\right)$.
$\mathrm{C}(2)-\mathrm{Yb}=107.5(4)^{\circ}$, and equivalent $\mathrm{Pt}-\mathrm{C}, \mathrm{Pt}-\mathrm{P}$, and $\mathrm{Yb}-\mathrm{C}$ distances, within experimental error (Table 6); this symmetry introduces a pseudo- C_{2} axis through the Pt and Yb metal centers. The $\mathrm{Pt}-\mathrm{P}$ and $\mathrm{Pt}-\mathrm{C}$ distances found for 9 are within the expected range for cis $-\mathrm{P}_{2} \mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}$ complexes; ${ }^{31}$ no significant perturbations are present as a result of the Yb -methyl interactions. The $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2) / \mathrm{Cp}{ }^{*}(1)-\mathrm{Yb}-\mathrm{Cp}^{*}(2)$ torsional angle (84.1(4) ${ }^{\circ}$), $\mathrm{Yb}-\mathrm{Cp}^{*}$ distances ($2.42 \AA$ for both), and the $\mathrm{Cp}{ }^{*}(1)-\mathrm{Yb}-\mathrm{Cp}^{*}(2)$ angle (139.6(5) ${ }^{\circ}$) are within the expected values.

Clearly, the bridging methyl portion of 9 is the structural feature of principal interest. The $\mathrm{C}(1)-\mathrm{Yb}$ and $\mathrm{C}(2)-\mathrm{Yb}$ distances are $2.908(8)$ and $2.88(1) \AA$, respectively, well within the sum of the van der Waals radii, $3.70 \AA$ (taking the van der Waals radius of a methyl group as $\left.2.00 \AA^{22}\right)$. In $\mathrm{Cp} * \operatorname{Be}(\mu-$ $\left.\mathrm{CH}_{3}\right) \mathrm{YbCp}^{*}{ }_{2}$, the Yb -methyl carbon distance is $2.766(4) \AA$, and in $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{YbCp}{ }^{*}$, the average $\mathrm{Yb}-\mathrm{C}$ (olefin) distance is $2.781(6) \AA .{ }^{2 d}$ Based on the orientation of the methyl

[^9]Table 5. Atomic Coordinates and B Values (\AA^{2}) for the Non-Hydrogen Atoms and H1A-H1C, H2A-H2C of Compound 9^{a}

atom	x	y	z	$B^{\text {b,c }}$
PT	-0.13023(1)	-0.38494(1)	-0.00293(1)	1.267(7)
YB	-0.11989(1)	0.14505 (1)	-0.14594(1)	$1.576(9)$
P1	-0.18026(7)	0.4589 (2)	0.0464 (1)	$1.65(5)$
P2	-0.08983(7)	$0.5173(2)$	0.0571 (1)	1.57 (5)
C1	-0.0843(3)	0.3200 (7)	-0.0507(5)	1.8(2)
C2	-0.1671(3)	0.2610 (7)	-0.0589(5)	$2.0(2)$
C3	-0.1593(3)	0.5658(8)	0.1099 (5)	2.4 (2)
C4	-0.1209(3)	$0.6231(8)$	0.0962(5)	2.6(2)
C5	-0.2195(3)	0.5434(8)	-0.0043(5)	2.4(2)
C6	-0.2452(3)	$0.4687(9)$	-0.0558(5)	3.1 (3)
C7	-0.2013(3)	0.6443(9)	-0.0385(7)	4.7(3)
C8	-0.2082(3)	0.3525(8)	0.0903 (5)	2.0 (2)
C9	-0.2356(3).	0.409 (1)	0.1346 (6)	$3.7(3)$
C10	-0.1800(3)	$0.2615(9)$	0.1290 (5)	3.1(3)
C11	-0.0547(3)	$0.4607(8)$	0.1250 (5)	2.1 (2)
C12	-0.0749(3)	0.388 (1)	$0.1728(5)$	3.5(3)
C13	-0.0212(3)	0.385(1)	$0.1027(6)$	3.8(3)
C14	-0.0594(3)	0.6110(7)	$0.0108(5)$	1.8(2)
C15	-0.0361(3)	0.7071(8)	0.0493(5)	2.7(2)
C16	-0.0842(3)	0.6603(8)	-0.0515(5)	2.6(2)
C17	-0.1384(3)	-0.0885(7)	-0.1322(5)	2.3(2)
C18	-0.1352(3)	-0.0424(7)	-0.0683(5)	1.8(2)
C19	-0.0959(3)	-0.0104(7)	-0.0474(5)	2.0(2)
C20	-0.0732(3)	-0.0347(7)	-0.0981(5)	$1.8(2)$
C21	-0.0981(3)	$-0.0843(7)$	-0.1506(5)	2.3(2)
C22	-0.1732(3)	-0.144(1)	-0.1738(6)	4.0 (3)
C23	-0.1685(3)	-0.0471(8)	-0.0278(6)	3.6(3)
C24	-0.0806(3)	0.0308(9)	0.0211(6)	3.3(3)
C25	-0.0285(3)	-0.0179(9)	-0.0944(6)	3.5(3)
C26	-0.0864(3)	-0.1446(8)	-0.2107(5)	3.3(3)
C27	-0.1361(3)	0.1645(8)	-0.2776(5)	2.7 (2)
C28	-0.1596(3)	$0.2536(8)$	-0.2528(5)	2.1 (2)
C29	-0.1322(3)	$0.3412(7)$	-0.2237(5)	2.0 (2)
C30	-0.0936(3)	$0.3065(8)$	-0.2292(5)	2.4(2)
C31	-0.0963(3)	0.1938(8)	-0.2634(5)	2.1 (2)
C32	-0.1539(4)	$0.064(1)$	-0.3214(6)	4.2 (3)
C33	-0.2045(3)	0.259(1)	-0.2631(6)	3.7(3)
C34	-0.1454(3)	0.4600(8)	-0.1970(5)	2.9 (2)
C35	-0.0552(3)	$0.3711(9)$	-0.2073(5)	3.3(3)
C36	-0.0611(3)	$0.1302(9)$	-0.2848(5)	3.6 (3)
H1C	-0.08450(1)	0.33806 (1)	-0.09808(1)	2.3*
H1A	-0.05382(1)	0.33927 (1)	-0.02860(1)	2.3*
H1B	-0.07878(1)	$0.22858(1)$	-0.05304(1)	2.3*
H2C	-0.15220(1)	$0.18718(1)$	-0.05765(1)	2.3*
H2A	-0.19496(1)	$0.25005(1)$	-0.03780(1)	2.3*
H2B	-0.17414(1)	$0.28522(1)$	-0.10737(1)	2.3*

${ }^{a}$ Numbers in parentheses give estimated standard deviations. ${ }^{b}$ Equivalent isotropic thermal parameters are calculated as ${ }^{4} / 3\left[\alpha^{2} \beta_{11}+\right.$ $\left.b^{2} \beta_{22}+c^{2} \beta_{33}+a b(\cos \gamma) \beta_{12}+a c(\cos \beta) \beta_{13}+b c(\cos \alpha) \beta_{23}\right] .{ }^{c}$ Starred atoms were included with isotropic thermal parameters.
hydrogens, the interaction involves donation of electron density from the $\mathrm{C}-\mathrm{H}$ bonds of the methyl groups to the electropositive Yb center (i.e., agostic interactions). The $\mathrm{Pt}-\mathrm{C}-\mathrm{Yb}$ angles, 107° and 108°, are much less acute than the analogous values found for $\mathrm{M}\left(\mu-\mathrm{CH}_{3}\right)_{2} \mathrm{M}^{\prime}$ structures containing $\mathrm{M}-\mathrm{C}-\mathrm{M}^{\prime}$ three-center/two-electron type interactions (e.g., $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Al}\right]_{2}$), in which this angle is $75-90^{\circ} .32$ The analogous angle in $\left[\mathrm{Cp}_{2} \mathrm{Yb}(\mu\right.$ $\left.\left.\mathrm{CH}_{3}\right)\right]_{2}$, which contains $\mathrm{Yb}-\mathrm{C}-\mathrm{Yb}$ type bridges, is 86.6°, and the $\mathrm{Yb}-\mathrm{C}$ distances are 2.49 and $2.54 \AA .{ }^{33}$ The $\mathrm{Pt}-\mathrm{C}-\mathrm{Yb}$ angles in 9 are most consistent with agostic $\mathrm{C}-\mathrm{H}--\mathrm{Yb}$ interactions, as the $\mathrm{Pt}-\mathrm{C}-\mathrm{H}$ angles are $\mathrm{ca} .106-121^{\circ}$.
For each methyl group, two of the hydrogens are oriented toward the ytterbium center, with distances ranging from 2.30 to $2.63 \AA$, and one hydrogen is oriented away from the ytterbium

[^10]Table 6. Selected Intramolecular Distances (\AA) and Angles (deg) in [(dippe) $\mathrm{Pt}\left(\mu-\mathrm{CH}_{3}\right)_{2} \mathrm{YbCp}^{*}{ }_{2}$ (9)

Bond Distances			
$\mathrm{Pt}-\mathrm{Yb}$	4.0391 (5)	$\mathrm{Yb}-\mathrm{Cp} 1^{\text {a }}$	2.42
Pt-P1	2.258 (3)	$\mathrm{Yb}-\mathrm{Cp} 2$	2.42
$\mathrm{Pt}-\mathrm{P} 2$	2.262(2)	$\mathrm{Yb}-\mathrm{H1A}$	3.74
$\mathrm{Pt}-\mathrm{C} 1$	2.089(9)	$\mathrm{Yb}-\mathrm{HlB}$	2.38
$\mathrm{Pt}-\mathrm{C} 2$	2.099(8)	$\mathrm{Yb}-\mathrm{H} 1 \mathrm{C}$	2.60
$\mathrm{Yb}-\mathrm{Cl}$	2.909(8)	$\mathrm{Yb}-\mathrm{H} 2 \mathrm{~A}$	3.80
$\mathrm{Yb}-\mathrm{C} 2$	2.88(1)	$\mathrm{Yb}-\mathrm{H} 2 \mathrm{~B}$	2.63
		$\mathrm{Yb}-\mathrm{H} 2 \mathrm{C}$	2.30
Bond Angles			
P1-Pt-P2	86.97(9)	$\mathrm{Cp} 1-\mathrm{Yb}-\mathrm{Cp} 2$	139.6(5)
$\mathrm{C} 1-\mathrm{Pt}-\mathrm{C} 2$	86.2(4)	$\mathrm{C} 1-\mathrm{Yb}-\mathrm{C} 2$	59.3(2)
$\mathrm{Pt}-\mathrm{Cl}-\mathrm{Yb}$	106.8(3)	$\mathrm{Pt}-\mathrm{C} 2-\mathrm{Yb}$	107.5(4)
$\mathrm{Yb}-\mathrm{Cl}-\mathrm{HlA}$	$133.7(6)$	$\mathrm{Yb}-\mathrm{Cl}-\mathrm{H} 1 \mathrm{~B}$	50.6(4)
$\mathrm{Yb}-\mathrm{C} 1-\mathrm{H1C}$	62.5(4)	$\mathrm{Yb}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	141.2(6)
$\mathrm{Yb}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	65.8(5)	$\mathrm{Yb}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	45.2(5)

${ }^{a}$ All distances and angles involving Cp * rings were calculated using the ring centroid positions, for this structure and also for the structure of 11 .
center, at a distance of $c a .3 .8 \AA$. The van der Waals distance for an $\mathrm{Yb}-\mathrm{H}$ interaction is $2.9 \AA$, using $1.2 \AA$ as the van der Waals radius for a hydrogen atom. ${ }^{22}$ The average $\mathrm{Yb}-\mathrm{H}$ distance in $\mathrm{Cp}{ }^{*} \mathrm{Be}\left(\mu-\mathrm{CH}_{3}\right) \mathrm{YbCp}^{*}$ is 2.59 (8) $\AA,{ }^{2 \mathrm{c}}$ and in $\left[\left\{\mathrm{CpNb}(\mu-\mathrm{H})_{2}\right\}_{2} \mathrm{Yb}(\right.$ diglyme $\left.)\right]$, it is $2.33(8) \AA \AA^{7}$ It is informative to compare the bridging methyl interactions of 9 to the $\mathrm{C}-\mathrm{H}-\mathrm{Yb}$ interactions in $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{YbCp} * 2,{ }^{2 \mathrm{~d}}$ in which the $\mathrm{C}-\mathrm{Pt}-\mathrm{C} / \mathrm{C}-\mathrm{Yb}-\mathrm{C}$ interplanar angle is 15.1°, resulting in two pairs of $\mathrm{Yb}-\mathrm{H}$ distances $(2.58,2.64 \AA ; 3.09,3.15 \AA$) and two pairs of $\mathrm{Yb}-\mathrm{C}-\mathrm{H}$ angles $\left(69.5^{\circ}, 100.0^{\circ}\right.$, average values for the short and long $\mathrm{Yb}-\mathrm{H}$ pairs, respectively). The analogous interplanar angle in 9 is only 4°; however, this also results in two pairs of $\mathrm{Yb}-\mathrm{H}$ distances $(2.30,2.38 \AA ; 2.60,2.63 \AA$; ignoring the long $\mathrm{Yb}-\mathrm{H} 1 \mathrm{~A}, \mathrm{H} 2 \mathrm{~A}$ interactions) and also two pairs of $\mathrm{Yb}-\mathrm{C}-\mathrm{H}$ angles $\left(47.9^{\circ}, 64.2^{\circ}\right.$, average angles for the shorter and longer $\mathrm{Yb}-\mathrm{H}$ pairs, respectively). While the differences in the pairs of $\mathrm{Yb}-\mathrm{H}$ interactions are less pronounced than in $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pt}\left(\mu-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{YbCp}{ }_{2}$, they are clearly also present for 9 . Given the symmetry of the two complexes, this phenomenon is likely not a steric or crystal packing effect; apparently such pairwise $\mathrm{Yb}-\mathrm{H}$ interactions are energetically more favorable than four equal $\mathrm{Yb}-\mathrm{H}$ interactions.

The orientation of the methyl groups in 9 , with four of the six $\mathrm{C}-\mathrm{H}$ bonds pointed toward the Yb center, maximizes the amount of electron donation to the Yb center that can occur (as structures containing five and six $\mathrm{C}-\mathrm{H}$ bonds interacting with the Yb center are clearly chemically unreasonable). This geometry results in an eclipsed geometry of the $\mathrm{C}-\mathrm{H}$ bonds, relative to the $\mathrm{C}-\mathrm{C}$ vector (the three pairs of $\mathrm{C}-\mathrm{Pt}-\mathrm{C}-\mathrm{H}$ torsional angles for analogous H's are all within 7° of each other). Two cis- $\mathrm{L}_{2} \mathrm{M}\left(\mathrm{CH}_{3}\right)_{2}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ structures have been reported in which the methyl hydrogens have been located; ${ }^{3 \mathrm{~b} .34}$ the methyl hydrogens in both of these structures are not eclipsed, relative to the $\mathrm{C}-\mathrm{C}$ vector. While it is possible that the orientation of the methyl hydrogens in 9 is solely a result of crystal packing and/or steric effects, given the conformations observed in the "free" $\mathrm{L}_{2} \mathrm{M}\left(\mathrm{CH}_{3}\right)_{2}$ complexes and the close $\mathrm{Yb}-\mathrm{H}$ distances in 9 , the observed conformation most likely arises as a result of the agostic $\mathrm{C}-\mathrm{H}-\mathrm{Yb}$ interactions.

Interaction with cis-(dippe) $\mathbf{P t}\left(\mathbf{C H}_{3}\right)(\mathbf{H})$. It was of interest to see if a methyl hydride complex of platinum would combine the best features of the dihydride and dimethyl complexes, viz., slow intermolecular exchange in solution, while still containing

[^11] Organometallics 1989, 8, 2907.

Table 7. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P},{ }^{195} \mathrm{Pt}$, and ${ }^{171} \mathrm{Yb}$ NMR Data for 10 and 11 (Toluene- d_{8}, at 25 and $-70{ }^{\circ} \mathrm{C}$)

	$25^{\circ} \mathrm{C}$		$-70^{\circ} \mathrm{C}$	
	10	11	10	11
$\delta(\mathrm{Pt}-H), \mathrm{ppm}$	0.48	-2.65	0.89	-2.40
${ }^{2} J_{\mathrm{P} \text { trans } \mathrm{H}}, \mathrm{Hz}$	201	163	198	159
${ }^{1} J_{\mathrm{PtH}}, \mathrm{Hz}$	+1158	+1034	+1137	+1020
$\delta(\mathrm{P}), \mathrm{ppm}$	85.5,70.1	81.3, 69.2	85.6, 72.0	82.7, 71.2
${ }^{1} \mathrm{JPP}_{\mathrm{Pr}}, \mathrm{Hz}^{\text {a }}$	+1822, +1747	+1978, +2186	+1841, +1775	+1992, +2205
$\delta(\mathrm{Cp} *), \mathrm{ppm}$	-	2.29, 1.94	-	2.50, 2.06
${ }^{1} J_{\mathrm{YbH}}, \mathrm{Hz}$	-	+114	-	+113
$J_{\mathrm{YbP}} \mathrm{Hz}^{a}$	-	$-,+78$	-	$-3,+82$
$\delta\left(\mathrm{CH}_{3}\right)$	1.44	0.64	1.65	0.72
${ }^{2} \mathrm{JPtCH}_{3}$	-71	-57	-70	-60
$J_{\mathrm{YbCH}}^{3} \mathrm{H}$			-	$+24$
$\delta\left(C \mathrm{H}_{3}\right)$			-13.8	-15.4
J_{YbCH}^{3}				$+46(4)^{b}$
${ }^{1} \mathrm{~J}_{\mathrm{CH}_{3}}$			$121(2)^{b}$	$123(2)^{\text {b }}$
$\delta(\mathrm{Pt}), \mathrm{ppm}$			-400	-520
$\delta(\mathrm{Yb}), \mathrm{ppm}$			-	+340
$J_{\text {PtYb }}, \mathrm{Hz}$			-	+960

${ }^{a}$ Listed as P trans to methyl, P trans to hydride, respectively. ${ }^{b}$ The estimated uncertainties in these values are shown in parentheses.
a bridging methyl interaction, so that the spectroscopic changes due to the methyl -Yb interaction could be studied. While it has been reported that (dcype) $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)(\mathrm{H})$ can be synthesized from reaction of (dcype) $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)(\mathrm{Cl})$ with excess NaHB$\left(\mathrm{OCH}_{3}\right)_{3},{ }^{35}$ we found that this method did not work reproducibly, and the yield of the desired product was low when successful. The synthesis of (dmpe) $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)(\mathrm{H})$ has also been reported, via reduction of (dmpe) $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)(\mathrm{OCOPh})$ with excess LiHBEt_{3} or LiBH_{4} at low temperature, although synthetic details were not given. ${ }^{36}$ We found that this method is also not reproducible. While it sometimes gave the desired product cleanly, at other times, it gave product mixtures containing many different species, including the desired methyl hydride complex as well as the dihydride complex, the latter presumably arising from reduction of the methyl hydride complex by the excess $\mathrm{LiHBEt}_{3} /$ LiBH_{4}. We have found that reaction of (dippe $) \mathrm{Pt}\left(\mathrm{CH}_{3}\right)(\mathrm{OCOPh})$ with the milder hydride source $\mathrm{NaHB}\left(\mathrm{OCH}_{3}\right)_{3}$ in thf results in clean conversion to the desired (dippe) $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)(\mathrm{H})$ complex, in reproducible yields of $70-80 \%$. This reaction can be done at room temperature, excess $\mathrm{NaHB}(\mathrm{OMe})_{3}$ does not result in product decomposition or reduced yields, and purification of the product is simple (see the Experimental Section for details). It appears that the combination of a milder hydride source, $\mathrm{NaHB}(\mathrm{OMe})_{3}$, with a platinum benzoate complex (containing a better leaving group than the analogous chloride complex) is a better method for synthesis of cis $-\mathrm{P}_{2} \mathrm{Pt}\left(\mathrm{CH}_{3}\right)(\mathrm{H})$ complexes.
Reaction of (dippe) $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)(\mathrm{H})(\mathbf{1 0})$ with 1 equiv of 1 in toluene results in a beige-orange solution from which dark greenbrown crystals, formulated as (dippe) $\operatorname{Pt}\left(\mu-\mathrm{CH}_{3}\right)(\mu-\mathrm{H}) \mathrm{YbCp}_{2}$ (11), can be isolated in 70% yield. The crystals are solventloss sensitive and turn gold upon exposure to vacuum. This solid has a $\nu(\mathrm{M}-\mathrm{H})$ band at $1895 \mathrm{~cm}^{-1}$ in its solid-state infrared spectrum, shifted from $1965 \mathrm{~cm}^{-1}$ for 10 . As found for 9 , no low-frequency $\mathrm{C}-\mathrm{H}$ stretches are present in the infrared spectrum, and crystals of $\mathbf{1 1}$ redissolve in toluene. A sample of this solid dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ gives NMR spectra that indicate intermolecular exchange is rapid at $25^{\circ} \mathrm{C}$; no coupling to ${ }^{171} \mathrm{Yb}$ is observed, and broadened resonances are present. However, a toluene- d_{8} solution of 1 and 10 , containing a slight excess of 1 , does not show intermolecular exchange at $25^{\circ} \mathrm{C}$, presumably for the same reasons as mentioned above (Figure 2 and accompanying discussion). Coupling of ${ }^{171} \mathrm{Yb}$ to the

[^12]hydride as well as to the phosphorus nucleus that is trans to the hydride is present at $25^{\circ} \mathrm{C}$. However, coupling to ${ }^{171} \mathrm{Yb}$ is not resolved for the methyl platinum-related resonances, in the room temperature 1-D ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ (P trans to the methyl group) NMR spectra. The NMR values measured on this sample at 25 and $-70^{\circ} \mathrm{C}$ are given in Table 7.

Considering first the room temperature ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ data, the perturbations in the values resulting from the presence of $\mathbf{1}$ are roughly equivalent to the changes that were seen for the analogous values in the dihydride and dimethyl complexes (Tables 1-3). Both ${ }^{1} J_{\mathrm{YbH}}$ and J_{YbP} (for the P trans to the hydride) are slightly smaller for 11, indicative of a slightly weaker Yb -hydride interaction in 11 than in the dihydride complexes 5 and 7. This may be a result of steric interactions between the Yb center and the methyl group, preventing the Yb center from approaching the hydride ligand as closely as in the dihydride complexes. Both the ${ }^{1} \mathrm{H}$ chemical shift perturbation of the methyl protons $(\Delta(\delta)=0.55 \mathrm{ppm}$ for $9,0.80 \mathrm{ppm}$ for 11), as well as the ${ }^{2} J_{\mathrm{PiCH}_{3}}$ perturbation $(\Delta(J)=2 \mathrm{~Hz}$ for 9 , 14 Hz for 11), are larger than for 9 , presumably indicating a stronger $\mathrm{Yb}-\mathrm{CH}_{3}$ interaction in 11 , relative to that in 9 .

The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR values of $\mathbf{1 1}$ are relatively unchanged upon cooling to $-70^{\circ} \mathrm{C}$, suggesting that the nature of the interaction between 1 and 10 is not changed significantly over this temperature range. The ${ }^{1} \mathrm{H} /{ }^{195} \mathrm{Pt} \mathrm{HMQC}$ spectrum measured at $-70^{\circ} \mathrm{C}$ (available as supplementary material) shows the presence of spin-spin coupling between ${ }^{195} \mathrm{Pt}$ and ${ }^{171} \mathrm{Yb}\left(J_{\mathrm{PY}}\right.$ $=960 \mathrm{~Hz}$) of roughly one-half the size of the analogous values measured for 5 and 7. The ${ }^{195} \mathrm{Pt}$ chemical shift is shifted upfield from the value for $10(\Delta(\delta)=-120 \mathrm{ppm})$, in contrast to the downfield shifts observed for 5 and $7(\Delta(\delta)=+111$ and +112 ppm , respectively). The ${ }^{171} \mathrm{Yb}$ shift for 11 at $-70^{\circ} \mathrm{C}$ is +340 ppm , shifted downfield 390 ppm from free 1. This contrasts with a downfield shift of 622 ppm for 5 and 522 ppm for 7, perhaps indicative of a weaker interaction between 1 and 10 , relative to the interactions formed between 1 and the cis dihydride complexes.

The ${ }^{1} \mathrm{H}^{195} \mathrm{Pt}$ spectrum of 11 at $0^{\circ} \mathrm{C}$ (Figure 6) shows that at this temperature J_{PtYb} is identical to the value obtained at -70 ${ }^{\circ} \mathrm{C}$ (this spectrum was optimized for the ${ }^{2} J_{\mathrm{PtH}}$ of the methyl protons, 58 Hz).

In addition, coupling of the ytterbium center to the methyl hydrogens is observed, J_{YbCH}^{3} $=24 \mathrm{~Hz}$. This value was also measured at $-70^{\circ} \mathrm{C}$ and was found to be identical. These similar spectroscopic values for 11 at 0 and $-70^{\circ} \mathrm{C}$ show that

Figure 6. ${ }^{1} \mathrm{H} /{ }^{195} \mathrm{Pt}$ HMQC NMR spectrum of $\mathbf{1 1}(\mathbf{3 0 0} \mathrm{MHz}$, toluene$d_{8}, 0^{\circ} \mathrm{C}$), showing the methyl-platinum cross peak region. Extra correlations are visible to the dippe ligand protons. Annotated with ${ }^{1} \mathrm{H}$ and ${ }^{195} \mathrm{Pt}$ projections in F 2 and F 1 , respectively.
the nature of the interaction is largely unchanged within this temperature range, as suggested by the ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ data. It is clear from Figure 6 why J_{YbCH}^{3} is not visible in the 1-D ${ }^{1} \mathrm{H}$ spectrum of 11: it is obscured by the methyl resonance of the non- ${ }^{171} \mathrm{Yb}$ isotopomers. Use of the ${ }^{1} \mathrm{H}-{ }^{195} \mathrm{Pt}$ HMQC however, makes use of the large ${ }^{195} \mathrm{Pt}-{ }^{-171} \mathrm{Yb}$ coupling to generate the E.COSY-like pattern, ${ }^{13}$ allowing elucidation of ${ }^{1} J_{\mathrm{YbCH}}^{3}$.

On the basis of the 24 Hz value of J_{YbCH}^{3}, there is clearly an $\mathrm{Yb}-\mathrm{CH}_{3}$ interaction present. A ${ }^{1} \mathrm{H} /{ }^{31} \mathrm{P}$ HMQC spectrum of 11 acquired at $-70{ }^{\circ} \mathrm{C}$ shows coupling of ${ }^{171} \mathrm{Yb}$ to the phosphorus nucleus trans to the methyl group, of $c a .3 \mathrm{~Hz}$ (this spectrum is available as supplementary material). This coupling is not seen in the $1-\mathrm{D}{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum, as it is within the line width of the major resonance. This coupling is much smaller than the analogous coupling to the phosphorus nucleus that is trans to the hydride ligand, 82 Hz . In a similar manner, the ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ HSQC ${ }^{37}$ spectrum shown in Figure 7 (optimized for ${ }^{1} \mathrm{~J}_{\mathrm{CH}_{3}}$ $=123 \mathrm{~Hz}$) allows the measurement of J_{YbCH}^{3}, $46 \pm 4 \mathrm{~Hz}$.

As was found for 9 , the ${ }^{1} J_{\mathrm{CH}_{3}}$ coupling constant for the bridging methyl group of $\mathbf{1 1}$ is unchanged from that of free $\mathbf{1 0}$. As the signs of ${ }^{1} J_{\mathrm{PtH}},{ }^{1} J_{\mathrm{PCC}},{ }^{1} J_{\mathrm{PtP}}$ are all positive, ${ }^{14}$ the signs of the rest of the coupling constants can be obtained from the 2-D spectra (including the ${ }^{1} \mathrm{H} /{ }^{195} \mathrm{Pt}$ spectrum at $-70^{\circ} \mathrm{C}$, available as supplementary material); these signs are given in Table 7.

An X-ray structure determination was performed on 11 in order to investigate the details of the interaction between 1 and 10 in the solid state. The crystallographic data (Table 8), positional parameters (Table 9), and selected intramolecular distances and angles (Table 10) are given below.

Unfortunately, three of the four isopropyl groups are disordered, as are both of the Cp * rings. While this disorder was satisfactorily modeled (see the Experimental Section for details), the hydrogen atoms on the bridging methyl group, as well as the hydride ligand, could not be located in the Fourier difference map. Nevertheless, the core of the structure is well-defined (Figure 8) and yields some valuable information.

While the hydride ligand was not found, its location is clear from the square planar coordination about the Pt center. The $\mathrm{Pt}-\mathrm{Yb}$ separation is $3.388(9) \AA$, compared to $3.264 \AA$ for 5
(37) Bodenhausen, G.; Ruben, D. J. Chem. Phys. Lett. 1980, 69, 185.

Figure 7. ${ }^{1} \mathrm{H} /{ }^{1 / 3} \mathrm{C}$ HSQC NMR spectrum of $11\left(300 \mathrm{MHz}\right.$, toluene- d_{8}, $-70{ }^{\circ} \mathrm{C}$), showing the methyl region. ${ }^{177} \mathrm{Yb}$ satellites are visible only for the major resonance and not for the ${ }^{195} \mathrm{Pt}$ satellites, due to insufficient signal/noise. Annotated with ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ projections in F 2 and F 1 , respectively.

Table 8. Crystallographic Data for [dippe) $\left.\mathrm{Pt}\left(\mu-\mathrm{CH}_{3}\right)(\mu-\mathrm{H}) \mathrm{YbCp}^{*}{ }_{2}\right]$ (11)

chem form	$\mathrm{P}_{2} \mathrm{PtYbC}_{35} \mathrm{H}_{66}$
mol wt	916.99
crystal size (mm)	$0.40 \times 0.35 \times 0.26$
$T,{ }^{\circ} \mathrm{C}$	-100
space group	$P 2, / c$
a, \AA	$18.778(5)$
b, \AA	$10.903(4)$
c, \AA	$20.255(5)$
β, deg	$114.74(2)$
V, \AA^{3}	$3766(2)$
Z	4
$d($ calcd $), \mathrm{g} \mathrm{cm}^{-3}$	1.617
$\mu($ calcd $) \mathrm{cm}^{-1}$	63.1
reflns measd	$h, \pm k,+l$
2θ range	$3-55^{\circ}$
no. of reflns collected	7390
max correl for cryst decay	not done
absn corn	$T_{\max }=2.00, T_{\text {min }}=0.696$
no. of atoms in least squares	59
no. of unique reflns	6669
no. of reflns with $I>3 \sigma(I)$	4710
p factor	0.05
no. of params	327
R	0.0689
R_{w}	0.0815
$R_{\text {all }}$	0.103
GOF	2.179
diff Fourier $\left(\mathrm{e} \AA \AA^{-3}\right)$	$+6.6^{b}-0.47$

${ }^{a}$ The program DIFABS ${ }^{30}$ was used for the absorption correction. ${ }^{b}$ See X-ray summary in the Experimental Section.
and $4.039 \AA$ for 9 . The $\mathrm{P}-\mathrm{Pt}-\mathrm{Yb}$ angles $(\mathrm{P}(1)-\mathrm{Pt}-\mathrm{Yb}=$ $\left.145.8(1)^{\circ}, \mathrm{P}(2)-\mathrm{Pt}-\mathrm{Yb}=127.2(1)^{\circ}\right)$ show that the $\left(\mu-\mathrm{CH}_{3}\right)-$ $(\mu-\mathrm{H})$ bridge is asymmetric, with the Yb center pulled toward the hydride. The $\mathrm{Pt}-\mathrm{P}$ distances are equivalent within experimental error $(\mathrm{Pt}-\mathrm{P}(1)=2.256(5) \AA, \mathrm{Pt}-\mathrm{P}(2)=2.252(5) \AA)$ and are identical within experimental error to those found for 9. The normally higher trans influence of the hydride ligand relative to an alkyl group ${ }^{38}$ is absent, likely a result of the stronger Yb -hydride interaction νs the Yb -methyl interaction. The Pt -methyl carbon distance in $11(2.16(2) \AA$) is identical

Table 9. Atomic Coordinates and B Values $\left(\AA^{2}\right)$ for the Non-Hydrogen Atoms of Compound $\mathbf{1 1}^{a}$

atom	x	y	z	$B^{\text {b }}$
Pt	0.72996 (1)	0.38180(1)	0.03830 (1)	3.23(1)
Yb	0.74825(1)	0.57953(1)	-0.08271(1)	2.99(1)
P1	0.6471(3)	0.2962(4)	$0.0798(2)$	4.4(1)
P2	0.8255(3)	0.2693(5)	0.1225 (2)	4.5(1)
C1	0.774(2)	$0.549(4)$	-0.206(2)	6.1(9)*
C1a	0.793(2)	0.509(2)	-0.183(1)	2.7(5)*
C2	0.711(1)	0.556(2)	-0.2259(7)	5.1(4)
C3	0.6637(9)	0.472(2)	-0.2136(7)	4.3(4)
C4	0.712(1)	0.377(2)	-0.1701(7)	4.8(4)
C5	0.787(1)	0.418(2)	-0.1596(9)	6.1(5)
C6	0.872(2)	0.565(3)	-0.183(2)	6.6(8)*
C6a	0.831(3)	0.631(4)	-0.222(2)	4(1)*
C7	0.704(2)	0.664(3)	-0.274(2)	6.7(7)*
C7a	0.643(3)	0.656(4)	-0.286(2)	3.8(9)*
C8	0.576 (2)	0.493(3)	-0.252(1)	$5.6(6)^{*}$
C8a	0.575(3)	0.431 (5)	-0.232(2)	4(1)*
C9	0.672(1)	0.264(2)	-0.152(1)	4.2(5)*
C9a	0.730(3)	0.249(5)	-0.134(2)	4(1)*
C10	0.856(2)	0.308(3)	-0.106(1)	6.1(7)*
C10a	0.882(3)	0.383(5)	-0.125(3)	$5(1)^{*}$
Clla	0.852(2)	0.768(3)	-0.040(2)	4.1(7)*
C11	0.847(2)	0.757(2)	-0.005(1)	2.4(5)*
C12	$0.7911(9)$	0.814(1)	-0.0837(8)	$4.2(4)$
C13	0.7240 (9)	0.819(1)	-0.072(1)	$4.7(5)$
C14	0.732(1)	0.778(2)	-0.009(1)	3.9(5)*
C15a	0.786(1)	0.747(2)	0.025 (1)	3.5(4)*
C15	0.839(2)	0.739(3)	0.023 (1)	6.0(7)*
C16	0.934(2)	0.739(4)	0.022(2)	5.8(9)*
C16a	0.911 (3)	0.684(5)	$0.093(2)$	$8(1)^{*}$
C17	0.777(2)	0.895(4)	-0.165(2)	6.0(9)*
C17a	0.828(2)	0.867(4)	-0.130(2)	5.7(9)*
C18	0.650(2)	0.878(3)	-0.141(2)	4.4(7)*
C18a	0.645(2)	0.867(4)	-0.093(2)	5.5(8)*
C19	0.650(2)	$0.794(4)$	$0.006(2)$	$6(1)^{*}$
C19a	0.722(3)	0.755(4)	0.062(2)	7(1)*
C20	0.825(2)	0.706(3)	$0.109(1)$	3.8(6)*
C20a	0.932(3)	0.772(4)	-0.044(2)	7(1)*
C21	0.696(2)	0.178(3)	0.141 (1)	3.2(5)*
C21a	$0.711(2)$	0.225 (3)	$0.174(1)$	$3.1(5)^{*}$
C22	0.774(2)	0.144(4)	$0.159(2)$	5.7(9)*
C22a	0.791(2)	0.201(3)	0.183(2)	4.5(7)*
C23	0.593(1)	0.403(2)	$0.1120(8)$	5.1(5)
C24	0.653(1)	0.505(2)	$0.158(1)$	8.2(6)
C25	0.549(1)	0.342 (2)	$0.151(1)$	$7.0(6)$
C26	0.559(2)	0.204(3)	$0.007(1)$	6.3(7)*
C26a	0.574(3)	$0.177(4)$	0.042(2)	3.8(9)*
C27	0.493(2)	0.275(4)	-0.048(2)	8.1(9)*
C27a	0.524(4)	0.218(6)	-0.041(3)	7(2)*
C28	0.594(3)	$0.117(4)$	-0.029(2)	10(1)*
C28a	0.612(4)	0.060(6)	0.036(3)	7(2)*
C29	0.880(1)	$0.158(2)$	$0.092(1)$	5.5(5)*
C30	$0.817(2)$	0.069(2)	$0.031(1)$	9.2(8)
C31	$0.945(2)$	0.076(4)	$0.147(2)$	6.0(9)*
C31a	0.930(2)	0.217 (4)	$0.064(2)$	$7(1)^{*}$
C32	0.903(2)	0.354(2)	0.192(1)	8.1(7)
C33	0.869(1)	0.448(3)	0.230 (1)	10.9(9)
C34	0.967 (2)	0.295 (4)	$0.245(2)$	$6(1)^{*}$
C34a	0.952(3)	0.414(4)	$0.163(2)$	$7(1)^{*}$
C35	0.636(1)	0.491 (2)	-0.0388(8)	4.7(5)

${ }^{a}$ Numbers in parentheses give estimated standard deviations. ${ }^{b}$ Starred atoms were included with isotropic thermal parameters.
within experimental error to the analogous distances found for 9 (2.089(9) and $2.099(8) \AA)$. The $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2) / \mathrm{Cp}^{*}(1)-\mathrm{Yb}-$ $\mathrm{Cp}{ }^{*}(2)$ torsional angle (92(2) ${ }^{\circ}$), $\mathrm{Yb}-\mathrm{Cp}^{*}$ distances (2.41 and $2.43 \AA$), and $\mathrm{Cp}^{*}-\mathrm{Yb}-\mathrm{Cp}^{*}$ angle (137(1) ${ }^{\circ}$) are normal. The $\mathrm{Pt}-\mathrm{C}(35)-\mathrm{Yb}$ angle of 85° contrasts with the analogous values for $9\left(107^{\circ}\right.$ and $\left.108^{\circ}\right)$ and shows the asymmetry of the bridge.

[^13]Table 10. Selected Intramolecular Distances (\AA) and Angles (deg) in [(dippe) $\mathrm{Pt}\left(\mu-\mathrm{CH}_{3}\right)(\mu-\mathrm{H}) \mathrm{YbCp}^{*}{ }_{2}$] (11)

Bond Distances			
$\mathrm{Pt}-\mathrm{Yb}$	$3.388(9)$	$\mathrm{Yb}-\mathrm{Cp} 1$	2.43
$\mathrm{Pt}-\mathrm{P} 1$	$2.256(5)$	$\mathrm{Yb}-\mathrm{Cp} 2$	2.41
$\mathrm{Pt}-\mathrm{P} 2$	$2.252(5)$	$\mathrm{Yb}-\mathrm{C} 35$	$2.79(2)$
$\mathrm{Pt}-\mathrm{C} 35$	$2.16(2)$		
Bond Angles			
$\mathrm{Pl}-\mathrm{Pt}-\mathrm{P} 2$	$87.0(2)$	$\mathrm{Cp} 1-\mathrm{Yb}-\mathrm{Cp} 2$	$137(1)$
$\mathrm{Pt}-\mathrm{C} 35-\mathrm{Yb}$	$85.4(6)$	$\mathrm{Pl}-\mathrm{Pt}-\mathrm{Yb}$	$145.8(1)$
$\mathrm{P} 2-\mathrm{Pt}-\mathrm{Yb}$	$127.2(1)$		

Figure 8. ORTEP diagram of (dippe) $\operatorname{Pt}(\mu-\mathrm{H})\left(\mu-\mathrm{CH}_{3}\right) \mathrm{YbCp}_{2}$ (11) with 50% probability thermal ellipsoids. For clarity, the disordered isopropyl groups and Cp * rings are not shown (the Cp * ring centroid positions are shown).

This angle is within the range normally found for $\mathrm{M}\left(\mu-\mathrm{CH}_{3}\right)_{2} \mathrm{M}^{\prime}$ structures possessing $\mathrm{M}-\mathrm{C}-\mathrm{M}^{\prime}$ three-center/two-electron type interactions. ${ }^{32}$

Discussion

The results presented above show that cis $-\mathrm{P}_{2} \mathrm{PtH}_{2}$ and cis$\mathrm{P}_{2} \mathrm{Pt}\left(\mathrm{CH}_{3}\right)(\mathrm{H})$ complexes form interactions of significant strength with the bent metallocene $\mathrm{Cp}^{*} \mathrm{Yb}$. It is clear that a hydride is a better ligand toward 1 than a methyl group. Strictly speaking, the exchange behavior observed for 9 indicates that the kinetic barrier for the interaction of 1 with 8 is small, relative to the barrier for the dihydride (and methyl hydride) complexes. Given the bent geometry of 1 and the overall lack of structural changes in general upon forming the Lewis acid-base adducts from 1 and the cis $-\mathrm{P}_{2} \mathrm{PtX}$ complexes, it is reasonable to assume that this barrier gives a qualitative indication of the strength of the interaction. Thus, the higher barriers for 5 and 7 (slow exchange), relative to the smaller barrier for 9 (fast intermolecular exchange), is consistent with a Yb -hydride interaction that is thermodynamically stronger than a Yb -methyl interaction. The unchanged methyl $\mathrm{C}-\mathrm{H}$ coupling constant and lack of any low-frequency $\mathrm{C}-\mathrm{H}$ stretches in the solid-state infrared spectrum of 9 are further indications that the agostic interactions are relatively weak and do not significantly perturb the $\mathrm{C}-\mathrm{H}$ bond, in either the solution or solid state.

The solid-state structural parameters for 11 are consistent with a $\mathrm{Pt}-\mathrm{C}-\mathrm{Yb}$ interaction, in contrast to the agostic interactions observed in the solid state for 9 . Also consistent with $\mathrm{Pt}-\mathrm{C}-$ Yb interactions in $\mathbf{1 1}$ is the $\mathrm{Pt}-\mathrm{Yb}$ distance, 3.388(1) \AA, only $0.12 \AA$ longer than the analogous distance for 5 and $0.65 \AA$ shorter than the distance found for 9 . Whether the agostic interactions in 9 are more favorable energetically than the direct $\mathrm{C}-\mathrm{Yb}$ interaction in $\mathbf{1 1}$ is unknown. If the former are more

(a)

(b)

(c)

(d)

(e)

Figure 9. Different types of bridging methyl groups that have been crystallographically characterized.
favorable, then the $\mathrm{Pt}-\mathrm{C}-\mathrm{Yb}$ interaction observed for 11 can be rationalized by assuming that the much stronger Yb -hydride interaction results in an asymmetric bridge, giving the Yb center no choice but to form a direct $\mathrm{C}-\mathrm{Yb}$ interaction.

The agostic interactions observed in the solid-state structure of 9 represent a rare bonding mode for bridging methyl groups. The different orientations of bridging methyl groups that have been structurally characterized are shown in Figure 9.

The most common orientation observed is the $\mathrm{M}-\mathrm{C}-\mathrm{M}^{\prime}$ type (Figure 9a), ${ }^{33.39}$ the classic example being the trimethylaluminum dimer. ${ }^{40}$ Several examples of types $b,{ }^{2 c, 41} c,{ }^{42}$ and d^{43} have also been observed. To the best of our knowledge, only two examples of type e, the orientation observed for 9 , have been reported. ${ }^{44}$

Unfortunately, the solution NMR data for 11 do not give a clear answer with respect to distinguishing between agostic interactions, a $\mathrm{Yb}-\mathrm{C}$ interaction, or a combination of both (phenomenologically, a bridging alkyl augmented by an α agostic interaction). ${ }^{45}$ The coupling of ${ }^{171} \mathrm{Yb}$ to both the C and H nuclei of the bridging methyl group in 11 is consistent with
(39) Holton, J.; Lappert, M. F.; Scollary, G. R.; Ballard, D. G. H.; Pearce, R.; Atwood, J. L.; Hunter, W. E. J. Chem. Soc., Chem. Commun. 1976, 425.
(40) (a) Lewis, P. H.; Rundle, R. E. J. Chem. Phys. 1953, 21, 986. (b) Vranka, R. G.; Amma, E. L. J. Am. Chem. Soc. 1967, 89, 3121. (c) Huffman, J. C.; Streib, W. E. J. Chem. Soc., Chem. Commun. 1971, 911.
(41) (a) Watson, P. L.; Parshall, G. W. Acc. Chem. Res. 1985, 18, 51. (b) Busch, M. A.; Harlow, R.; Watson, P. L. Inorg. Chim. Acta 1987, 140 , 15. (c) Hitchcock, P. B.; Lappert, M. F.; Smith, R. C. J. Chem. Soc., Chem. Commun. 1989, 369.
(42) (a) Waymouth, R. M.; Santarsiero, B. D.; Coots, R. J.; Brownikowski, M. J.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 1427. (b) Waymouth, R. M.; Santarsiero, B. D.; Grubbs, R. H. J. Am. Chem. Soc. 1984, 106, 4050. (c) Waymouth, R. M.; Potter, K. S.; Schaeffer, W. P.; Grubbs, R. H. Organometalics 1990, 2843.
(43) (a) Ozawa, F.; Park, J. W.; Mackenzie, P. B.; Schaefer, W. P.; Henling, L. M.; Grubbs, R. H. J. Am. Chem. Soc. 1989, 111, 1319. (b) Park, J. W.; Mackenzie, P. B.; Schaefer, W. P.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 6402. (c) Dawkins, G. M.; Green, M.; Orpen, A. G.; Stone, F. G. A. J. Chem. Soc., Chem. Commun. 1982, 41.
(44) (a) Hitchcock, P. B.; Howard, J. A. K.; Lappert, M. F.; Prashar, S. J. Organomet. Chem. 1992, 437, 177. (b) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113, 3623.
(45) While isotopic perturbation of resonance/coupling constant experiments may be informative, ${ }^{46}$ given the small perturbations in the methylrelated spectral values for 10 relative to those of 11 , such experiments will likely give ambiguous results (see especially ref 46a below). Related to this, the J_{YbCH}^{3} value will not change very much upon partial deuteration of the methyl group. If it is assumed that two methyl hydrogens interact with the Yb center, then the maximum value for $\mathrm{J}_{\mathrm{YbCDH}}^{2}$ for (dippe) $\operatorname{Pt}(\mu$ -$\left.\mathrm{CDH}_{2}\right)(\mu-\mathrm{H}) \mathrm{YbCp}^{*}$ would be 36 Hz . This maximum value would be observed only if the methyl group were not rotating, with both hydrogens oriented toward the Yb center, an unlikely scenario.
(46) (a) Green, M. L. H.; Hughes, A. K.; Popham, N. A.; Stephens, A. H. H.; Wong, L.-L. J. Chem. Soc., Dalton Trans. 1992, 3077. (b) Calvert, R. B.; Shapley, J. R. J. Am. Chem. Soc. 1978, 100, 7726. (c) Casey, C. P.; Fagan, P. J.; Miles, W. H. J. Am. Chem. Soc. 1982, 104, 1134.
all three of these possibilities, ${ }^{47}$ as is the unchanged ${ }^{1} J_{\mathrm{CH}_{3}}$ value for 11. It is known that ${ }^{1} J_{\mathrm{CH}_{3}}$ values are not significantly perturbed upon formation of $\mathrm{M}-\mathrm{C}-\mathrm{M}^{\prime}$ bridging interactions. ${ }^{48}$ There have also been several reports of agostic complexes in which ${ }^{1} J_{\mathrm{CH}}$ is unchanged or decreases only very slightly (see
 the same signs does not unequivocally rule out a direct $\mathrm{Yb}-\mathrm{C}$ interaction. While ${ }^{1} J_{\mathrm{MC}}$ and ${ }^{2} J_{\mathrm{MCH}_{3}}$ generally have opposite signs for transition metal complexes containing direct $\mathrm{M}-\mathrm{C}$ interactions (where M is an NMR-active isotope), ${ }^{50}$ the small number of these examples requires that the sign criterion be used critically. However, the same signs of J_{YbCH}^{3} and J_{YbCH}^{3} for $\mathbf{1 1}$ are certainly least consistent with just a direct $\mathrm{Yb}-\mathrm{C}$ interaction.

Comparison of the $J_{\mathrm{YbC}, \mathrm{H}}$ values measured on 11 to $J_{\mathrm{MC}, \mathrm{H}}$ values of bridging hydride and methyl complexes that have been reported in the literature is also informative. While J_{YbH} and J_{YbC} values cannot be measured on $\left[\mathrm{Cp}_{2} \mathrm{Yb}\left(\mu-\mathrm{CH}_{3}\right)\right]_{2}$, a compound with a $\mathrm{Yb}-\mathrm{C}-\mathrm{Yb}$ interaction in the solid state ${ }^{32,51}$ ($\mathrm{Yb}(\mathrm{III})$ is paramagnetic), both J_{YH} and J_{YC} have been measured for $\left[\mathrm{Cp}_{2} \mathrm{Y}\left(\mu-\mathrm{CH}_{3}\right)\right]_{2}$, which also possesses $\mathrm{M}-\mathrm{C}-\mathrm{M}$ bridges in the solid state. ${ }^{51}$ The ${ }^{1} J_{\mathrm{YC}}$ value for this complex is 25.0 Hz , while J_{YH} is 3.6 Hz (all of the $J_{\mathrm{YC}, \mathrm{H}}$ values discussed in this paragraph are absolute values, as the signs of the coupling constants have not been reported), consistent with a direct $\mathrm{Y}-\mathrm{C}$ interaction and longer range (two-bond) $\mathrm{Y}-\mathrm{H}$ interactions; this gives a ratio of $J_{\mathrm{YC}} / J_{\mathrm{YH}}$ of 6.94 . The ratio for $\mathrm{Cp}_{2} \mathrm{Y}\left(\mu-\mathrm{CH}_{3}\right)_{2}-$ $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2},{ }^{52}$ which also has $\mathrm{M}-\mathrm{C}-\mathrm{M}^{\prime}$ type interactions in the solid state, ${ }^{39}$ is $J_{\mathrm{YC}} / J_{\mathrm{YH}}=12.2 \mathrm{~Hz} / 5.0 \mathrm{~Hz}=2.44$. For 11, the analogous ratio is $J_{\mathrm{YbC}} / J_{\mathrm{YbH}}=46 \mathrm{~Hz} / 24 \mathrm{~Hz}=1.92$ (the use of reduced coupling constants, K, is not necessary, as the nuclei being compared are constant). It is also interesting to compare the J_{YH} value of 3.6 Hz for $\left[\mathrm{Cp}_{2} \mathrm{Y}\left(\mu-\mathrm{CH}_{3}\right)\right]_{2}$ to the J_{YH} values found for $\left(\mathrm{Cp}_{2} \text { (thf) } \mathrm{Y}(\mu-\mathrm{H})\right]_{2}(27.0 \mathrm{~Hz})^{53}$ and $\left[\mathrm{Cp}^{2} \mathrm{Y}(\mu-\mathrm{H})\right]_{2}$ $(37.5 \mathrm{~Hz}){ }^{54}$ giving [$J_{\mathrm{YH}}(\mu-\mathrm{H}$ complex $) / J_{\mathrm{YH}}\left(\mu-\mathrm{CH}_{3}\right.$ complex $)$] ratios of 7.50 and 10.4 , respectively. The analogous values for the Yb complexes, 11 and 5 , give a ratio of $180 \mathrm{~Hz} / 24 \mathrm{~Hz}=$ 7.50 .

The J_{PtH} and J_{PtC} values have been measured for a series of trans $-\mathrm{PtCl}_{2} \mathrm{LX}$ complexes $\left(\mathrm{L}=\mathrm{PR}_{3}\right.$, AsR 3 , olefin; $\mathrm{X}=\mathrm{a}$ quinoline/Schiff base derivative, possessing an aryl/alkyl donor $\mathrm{C}-\mathrm{H}$ bond(s)). ${ }^{49 \mathrm{~b}}$ These complexes have been described as "weak" agostic complexes. They are square planar Pd, Pt, or
(47) Recently (Hitchcock, P. B.; Holmes, S. A.; Lappert, M. F.; Tian, S. J. Chem. Soc., Chem. Commun. 1994, 2691), a ${ }^{2} \mathrm{~J}_{\mathrm{YbH}}$ value of 30 Hz has been reported for $\left[\mathrm{Yb}\left[\mathrm{CH}\left(\mathrm{SiMe}_{3}\right)_{2}\right]_{2}\left(\mathrm{OEt}_{2}\right)_{2}\right]$ and a ${ }^{1} \mathrm{~J}_{\mathrm{YbC}}$ value of 0.32 Hz has been reported for $\left[\mathrm{Yb}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right) \mathrm{C}\left({ }^{1} \mathrm{Bu}\right) \mathrm{CH}\left(\mathrm{SiMe}_{3}\right)\right\}_{2}\right]$. The ${ }^{2} \mathrm{~J}_{\mathrm{YbH}}$ value is similar to that measured for 11 ; however, the ${ }^{1} \mathrm{~J}_{Y b c}$ value is much smaller than the analogous value for 11 and is unexpectedly small for a one-bond $\mathrm{Yb}-\mathrm{C}$ coupling constant.
(48) For example, ${ }^{1} J_{\mathrm{CH}_{3}}$ values for the terminal and bridging methyl groups of $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Al}\right]_{2}$ are 112.7 and 115.3 Hz , respectively (Olah, G. A.; Prakash, K. S.; Liang, G.; Henold, K. L.; Haigh, G. B. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 5217).
(49) (a) Neve, F.; Ghedini, M.; Crispini, A. Organometallics 1992, 11, 3324. (b) Albinati, A.; Pregosin, P. S.; Wombacher, F. Inorg. Chem. 1990, 29, 1812. (c) Albinati, A.; Anklin, C. G.; Ganazoli, F.; Ruegg, H.; Pregosin, P. S. Inorg. Chem. 1987, 26, 503. (d) Albinati, A.; Arz, C.; Pregosin, P. S. Inorg. Chem. 1987, 26, 508. (e) Anklin, C. G.; Pregosin, P. S. Magn. Reson. Chem. 1985, 23, 671. (f) Deeming, A. J.; Rothwell, I. P.; Hursthouse, M. B.; Abdul Malik, K. M. J. Chem. Soc., Dalton Trans. 1980, 1974.
(50) Jameson, C. J. In Multinuclear NMR; Mason, J., Ed.; Plenum Press: New York, 1987: pp 106-109.
(51) Holton, J.; Lappert, M. F.; Ballard, D. G. H.; Pearce, R.; Atwood, J. L.; Hunter, W. E. J. Chem. Soc., Dalton Trans. 1979, 54.
(52) Holton, J.; Lappert, M. F.; Ballard, D. G. H.; Pearce, R.; Atwood, J. L.; Hunter, W. E. J. Chem. Soc., Dalton Trans. 1979, 45.
(53) Evans, W. J.; Meadows, J. H.; Wayda, A. L.; Hunter, W. E.; Atwood, J. L. J. Am. Chem. Soc. 1982, 104, 2008.
(54) Booij, M.; Deelman, B.-J.; Duchateau, R.; Postma, D. S.; Meetsma, A.; Teuben, J. H. Organometallics 1993, 12, 3531.

Rh complexes containing the agostic donor held rigidly in place in the pseudoaxial fifth coordination site, and they have an unperturbed ${ }^{1} J_{\mathrm{CH}}$ value and a low-field shift of the agostic hydrogen resonance, in contrast to the high-field shift that is commonly observed for agostic complexes. ${ }^{49}$ The $J_{\mathrm{PCC}} / J_{\mathrm{PH}}$ values for these complexes are in the range of ca. 2.3-3.2, similar to the value observed for 11. It is interesting that for [trans- $\mathrm{Rh}(\mathrm{CO})(8$-methylquinoline $\left.)\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{BF}_{4}\right),{ }^{49 \mathrm{a}}$ which also contains a weak agostic interaction, J_{RhC} is 1.8 Hz while J_{RhH} is not observed. To the best of our knowledge, the only example of a "true" agostic complex for which J_{MC} and J_{MH} have been measured is $\left[\left(\mathrm{Cp}^{*}\right) \mathrm{Rh}\left(\mathrm{C}_{10} \mathrm{H}_{13}\right)\right]\left[\mathrm{PF}_{6}\right]$ (in which ${ }^{1} J_{\mathrm{CH}}$ is 83 Hz , lowered from 152 Hz); ${ }^{55}$ the measured values give a $J_{\mathrm{RhC}} / J_{\mathrm{RhH}}$ ratio of $3.6 \mathrm{~Hz} / 10.2 \mathrm{~Hz}=0.35,{ }^{56}$ far lower than the value observed for $11 .{ }^{57}$ On the basis of the coupling constant ratios in this diverse set of compounds and the unchanged ${ }^{1} J_{\mathrm{CH}_{3}}$ value in 11, it is reasonable to classify 11 as a weak agostic complex in solution. ${ }^{58}$

The strong Yb -hydride interaction in 11 results in a close $\mathrm{Yb}-\mathrm{CH}_{3}$ contact and the observed Yb - -methyl interactions. This is similar to the weak agostic complexes mentioned above, in which the $\mathrm{C}-\mathrm{H}$ donor is held rigidly near the metal center. The agostic interactions in this class of complexes, and likely also in 11, are mainly a result of geometrical constraints; these geometrical constraints (i.e., the exact orientation of the metal center relative to the $\mathrm{C}-\mathrm{H}$ donor(s)) determine the details of the agostic interaction. This is in contrast to "classical" or "strong" agostic complexes, in which the interaction arises mainly from orbital energy considerations. The distinction between "classical" and "weak" agostic complexes is not unambiguous; the latter class is characterized by unchanged ${ }^{1} J_{\mathrm{CH}}$ values and $J_{\mathrm{MC}} / J_{\mathrm{MH}}$ ratios intermediate between $\mathrm{M}-\mathrm{C}-\mathrm{M}^{\prime}$ type complexes and agostic complexes in which ${ }^{1} J_{\mathrm{CH}}$ is substantially lowered.

The presence of coupling between the Pt and Yb centers in 5,7 , and 11 indicates that there is communication of the metal nuclear spins, likely via the bridging ligands. Is this $\mathrm{Pt}-\mathrm{Yb}$ nuclear spin-spin communication significant? As mentioned above, there have not been many J_{Ybx} values reported and no Yb -transition metal coupling constants. Comparison of the reported J_{YbX} values to the J_{PtYb} values measured for 5,7 , and 11 is not valid, as different nuclei are involved, and the different magnetogyric ratios make such a comparison meaningless. Comparision of the reduced coupling constant values is complicated by the fact that, while such values are independent of the magnetogyric ratios involved, they are still dependent on the atomic number and are also strongly affected by relativistic effects, which will be large for both ${ }^{195} \mathrm{Pt}$ and ${ }^{171} \mathrm{Yb} .{ }^{59}$ It is known that $J_{\text {PtPt }}$ values for polynuclear Pt complexes show no correlation with solid-state $\mathrm{Pt}-\mathrm{Pt}$ distances and a similar possibility has been suggested for J_{PtW} values. ${ }^{14}$ Another potential complication is the possibility of two different communication mechanisms, a direct $\mathrm{Pt}-\mathrm{Yb}$ interaction and interac-
(55) Bennett, M. A.; McMahon, I. J.; Pelling, S.; Robertson, G. B.; Wickramasinghe, W. A. Organometallics 1985, 4, 754.
(56) Ball, G. E. Unpublished results.
(57) Two examples of $\mathrm{Pt}(\mathrm{II})$ complexes containing β-agostic CH_{3} interactions, in which rotation about the $\mathrm{C}_{\alpha}-\mathrm{C}_{\text {agostic }}$ bond can be frozen out, have been reported (Carr, N.; Mole, L.; Orpen, A. G.; Spencer, J. L. J. Chem. Soc., Dalton Trans. 1992, 2653); unfortunately, the coupling constants between the agostic C and H nuclei and the Pt center were not reported.
(58) The $\delta\left(\mathrm{CH}_{3}\right)$ resonance for 11 is shifted upfield, relative to the analogous value in $\mathbf{1 0}$. Reference 49 b contains a discussion concerning the origin of the low-field ${ }^{1} \mathrm{H}$ shifts for weak agostic complexes.
(59) Sanders, J. C. P.; Schrobilgen, G. J. In Multinuclear Magnetic Resonance in Liquids and Solids-Chemical Applications; Granger, P., Harris, R. K., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; Chapter XI.
tion via the bridging ligands. The coupling via the first mechanism (one-bond) may be either of the same or of opposite sign to the coupling via the second mechanism (>one-bond), and this can have a large effect on the measured coupling constant value; this has been suggested as a possible reason for the seemingly random J_{PtPt} values. ${ }^{14}$ Consequently, the only thing that can be stated with certainty concerning the J_{PTYb} values measured on 5,7 , and 11 is that there is nuclear spin communication between the metal centers and that this communication is about equal for $\mathbf{5}$ and $\mathbf{7}$ and roughly halved for 11. Whether the difference is a consequence of the different bridging ligands in the complexes, of the longer $\mathrm{Pt}-\mathrm{Yb}$ separation for 11, or a combination of these two possibilities is unknown.

Conclusion

We have found that $\mathbf{1}$ forms interactions of significant strength with cis dihydride complexes of platinum(II). The nature of this interaction is not affected by a change in the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ bite angle, a somewhat surprising result. While intermolecular exchange can be stopped only at very low temperature for the dimethyl platinum derivative 9 , the solid-state structure of this adduct shows a rare agostic bonding mode for the bridging methyl groups. The methyl hydride derivative, 11, undergoes slow exchange in solution at $25^{\circ} \mathrm{C}$ and, in contrast to 9 , shows a $\mathrm{Pt}-\mathrm{C}-\mathrm{Yb}$ bonding mode in the solid state. The solutionstate Yb -methyl interaction likely arises mainly as a result of the strong Yb -hydride interaction holding the Yb center near the methyl group (i.e., it results from conformational constraints) and appears to involve both $\mathrm{Yb}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}-\mathrm{Yb}$ interactions, although the exact nature of this interaction cannot be unequivocally determined from the solution-state data. An intermolecular exchange mechanism is introduced in the presence of excess platinum complex, for $\mathbf{5 , 7}$, and 11. Spin-spin communication between the two metal centers is present in 5,7, and 11. This communication is similar for 5 and 7 and roughly halved for 11, but the precise mechanism(s) of this communication is (are) unknown.
We are continuing our investigations of the solution- and solid-state perturbations resulting from the interaction of 1 with various nonclassical Lewis bases. As above, the NMR-active ${ }^{171} \mathrm{Yb}$ isotope will be utilized in these studies. Our focus remains on stopped-exchange adducts, for which J_{YbX} values can be measured to give information concerning the nature of the Lewis acid-base interactions in the solution state. The results of these investigations will be reported at a later date.

Experimental Section

General Procedure. All reactions and product manipulations were carried out under dry nitrogen using standard Schlenk and drybox techniques. Solvents and reagents were dried and purified as described pre viously. ${ }^{11}$ Infrared spectra, melting points, elemental analyses, and NMR spectra were obtained as previously described. ${ }^{11}$
${ }^{1} \mathrm{H}$ NMR shifts are relative to tetramethylsilane; the residual solvent peak was used as an internal reference. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR shifts are relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ at $\delta 0.0$, with shifts downfield of the reference considered positive. ${ }^{195} \mathrm{Pt}$ shifts are referenced to an absolute frequency scale relative to the proton signal of tetramethylsilane at 100.0000 MHz with Ξ defined to be exactly $21.4 \mathrm{MHz}^{60}$ and scaled according to the ${ }^{1} \mathrm{H}$ frequency of the particular machine used. A similar method was used for the ${ }^{17} \mathrm{Yb}$ referencing, with the standard being the reported frequency for $\mathrm{Cp}{ }_{2} \mathrm{Yb}(\text { thf })_{2}{ }^{4 \mathrm{~b}}$ and again scaled according to the ${ }^{1} \mathrm{H}$ frequency of the particular machine used. The HMQC or HSQC pulse sequence was used to acquire all of the 2-D spectra. ${ }^{12,37}$ In all cases where metal

[^14]chemical shifts were being investigated, first a large sweep width in the X dimension was used, and then the sweep width was narrowed, to assure that the resonances were not folded.
(dcype) $\mathbf{P t}(\mu-\mathbf{H})_{2} \mathbf{Y b C p}{ }_{2}(\mathbf{5})$. To a solution of $\mathbf{4}^{61}(0.15 \mathrm{~g}, 0.24$ $\mathrm{mmol})$ in toluene (10 mL) was added a solution of $1(0.11 \mathrm{~g}, 0.25$ mmol) in toluene (10 mL). The resulting dark blue solution was stirred at room temperature for 1 h and then filtered. Slow cooling of the filtrate to $-40^{\circ} \mathrm{C}$ gave 5 as dark maroon crystals. Concentration of the mother liquor, followed by cooling to $-80^{\circ} \mathrm{C}$, gave a second crop of crystals, for a total yield of $0.19 \mathrm{~g} \mathrm{(75} \mathrm{\%)} ,\mathrm{mp} \mathrm{308-310}{ }^{\circ} \mathrm{C}$ (dec). The NMR data were measured on a sample made by adding $\mathrm{C}_{6} \mathrm{D}_{6}$ to a mixture of 1 (slight excess) and 4. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 2.42(\mathrm{~s}, 30 \mathrm{H})$, $2.10-1.00(\mathrm{~m}, 48 \mathrm{H}),-1.98\left(\mathrm{~m}, 2 \mathrm{H},{ }^{1} \mathrm{~J}_{\mathrm{PtH}}=1031 \mathrm{~Hz},{ }^{1} J_{\mathrm{YbH}}=180\right.$ $\left.\mathrm{Hz},{ }^{2} J_{\mathrm{PH}}=152,14 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 75.4\left(\mathrm{~s},{ }^{1} J_{\mathrm{PtP}}\right.$ $\left.=2077 \mathrm{~Hz}, J_{\mathrm{YbP}}=93 \mathrm{~Hz}\right)$. IR: $2718 \mathrm{w}, 1889 \mathrm{~s}(\mathrm{br}), 1416 \mathrm{w}, 1379 \mathrm{~m}$, $1345 \mathrm{w}, 1293 \mathrm{~m}, 1271 \mathrm{~m}, 1195 \mathrm{w}, 1173 \mathrm{~m}, 1119 \mathrm{~m}, 1109 \mathrm{~s}, 1043 \mathrm{~m}$, $1004 \mathrm{~s}, 913 \mathrm{~m}, 888 \mathrm{~m}, 851 \mathrm{~s}, 822 \mathrm{~m}, 797 \mathrm{~s}, 751 \mathrm{~s}, 738 \mathrm{~m}, 724 \mathrm{w}, 672$ $\mathrm{m}, 650 \mathrm{~m}, 527 \mathrm{~s}, 510 \mathrm{w}, 483 \mathrm{w}, 393 \mathrm{w}, 361 \mathrm{~m} \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{P}_{2} \mathrm{PtYb}: \mathrm{C}, 52.0 ; \mathrm{H}, 7.58$. Found: $\mathrm{C}, 51.6 ; \mathrm{H}, 7.28$.
(dippe) $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)_{2}(8)$. To a solution of dimethyl(1,5-cyclooctadiene)platinum $(\mathrm{II})^{62}(0.33 \mathrm{~g}, 1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise a solution of dippe ($0.26 \mathrm{~g}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The resulting light yellow solution was stirred at room temperature for 12 h . The solvent was removed under reduced pressure, the residue was dissolved in a $2: 1$ pentane:toluene solution (20 mL), and the resulting solution was filtered. Slow cooling of the filtrate to $-40^{\circ} \mathrm{C}$ yielded 8 as white crystals $(0.38 \mathrm{~g}, 78 \%)$, mp $134-136^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 2.05(\mathrm{~m}, 4 \mathrm{H}), 1.23\left(\mathrm{t}, 6 \mathrm{H},{ }^{1} \mathrm{~J}_{\mathrm{PtH}}=68 \mathrm{~Hz},{ }^{2} J_{\mathrm{PH}}=7 \mathrm{~Hz}\right), 0.92$ (m, 28H) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 70.4\left(\mathrm{~s},{ }^{1} J_{\mathrm{PtP}}=1816 \mathrm{~Hz}\right)$. IR: $3594 \mathrm{~s}, 1409 \mathrm{w}, 1379 \mathrm{~s}, 1362 \mathrm{~s}, 1297 \mathrm{w}, 1252 \mathrm{~m}, 1239 \mathrm{~s}, 1193 \mathrm{~m}$, $1176 \mathrm{~m}, 1161 \mathrm{~m}, 1106 \mathrm{~m}, 1091 \mathrm{~m}, 1079 \mathrm{~m}, 1028 \mathrm{~s}, 964 \mathrm{w}, 926 \mathrm{~m}$, $884 \mathrm{~s}, 861 \mathrm{~m}, 791 \mathrm{~s}, 695 \mathrm{~s}, 679 \mathrm{~s}, 651 \mathrm{~s}, 634 \mathrm{~m}, 617 \mathrm{~s}, 522 \mathrm{~s}, 509 \mathrm{~s}$, $488 \mathrm{~m}, 467 \mathrm{~m}, 424 \mathrm{w}, 386 \mathrm{~m}, 378 \mathrm{~m}, 278 \mathrm{~m} \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{38} \mathrm{P}_{2} \mathrm{Pt}: \mathrm{C}, 39.4 ; \mathrm{H}, 7.86$. Found: $\mathrm{C}, 39.2 ; \mathrm{H}, 7.59$.
(dippe) $\mathbf{P t}\left(\mu-\mathrm{CH}_{3}\right)_{2} \mathbf{Y b C p}{ }_{2}$ (9). To a solution of $8(0.43 \mathrm{~g}, 0.88$ $\mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ was added a solution of $1(0.39 \mathrm{~g}, 0.88$ mmol) in toluene (10 mL). Upon addition, the mixture immediately turned deep green and a green precipitate appeared. After being stirred at room temperature for 1 h , the mixture was warmed to $50^{\circ} \mathrm{C}$ to dissolve all of the solid. The solution was filtered at $50^{\circ} \mathrm{C}$, and the filtrate was allowed to cool slowly to room temperature. Further slow cooling to $-40^{\circ} \mathrm{C}$ produced 9 as dark green crystals ($0.70 \mathrm{~g}, 86 \%$). Subsequent recrystallization from a $2: 1$ toluene:pentane solution (slow cooling to $-40^{\circ} \mathrm{C}$) yielded X-ray quality crystals, mp $264-266^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 2.28(\mathrm{~s}, 30 \mathrm{H}), 1.92\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.85$ $(\mathrm{m}, 28 \mathrm{H}), 0.68\left(\mathrm{t}, 6 \mathrm{H},{ }^{2} J_{\mathrm{PtCH}}{ }^{2}=66 \mathrm{~Hz},{ }^{3} J_{\mathrm{PCH}}^{3} 10 ~=~ 7 \mathrm{~Hz}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 70.0\left(\mathrm{~s},{ }^{1} J_{\mathrm{PtP}}=1968 \mathrm{~Hz}\right)$. IR: $2725 \mathrm{~m}, 2285 \mathrm{w}$, $1382 \mathrm{~s}, 1366 \mathrm{~m}, 1296 \mathrm{w}, 1285 \mathrm{w}, 1253 \mathrm{~m}, 1239 \mathrm{w}, 1172 \mathrm{w}, 1161 \mathrm{w}$, $1134 \mathrm{w}, 1105 \mathrm{w}, 1091 \mathrm{w}, 1080 \mathrm{w}, 1029 \mathrm{~s}, 927 \mathrm{w}, 884 \mathrm{~m}, 859 \mathrm{~m}, 797$ $\mathrm{m}, 762 \mathrm{w}, 725 \mathrm{w}, 703 \mathrm{w}, 684 \mathrm{~s}, 652 \mathrm{~s}, 620 \mathrm{~m}, 587 \mathrm{w}, 520 \mathrm{~m}, 504 \mathrm{w}$, $490 \mathrm{~m}, 466 \mathrm{~m}, 425 \mathrm{w}, 388 \mathrm{w}, 369 \mathrm{~m}, 269 \mathrm{~s} \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{68} \mathrm{P}_{2} \mathrm{PtYb}: \mathrm{C}, 46.4 ; \mathrm{H}, 7.36$. Found: $\mathrm{C}, 46.2 ; \mathrm{H}, 7.42$.
(dippe) $\mathbf{P t}\left(\mathbf{C H}_{3}\right)(\mathbf{O C O P h})$. To a Schlenk tube containing 8 (0.66 $\mathrm{g}, 1.4 \mathrm{mmol})$ and benzoic acid ($0.33 \mathrm{~g}, 2.7 \mathrm{mmol}$) was added diethyl ether (40 mL). [It was found that using 1 equiv of benzoic acid results in only partial substitution, so that a mixture of 8 and the desired product was obtained.] The resulting pale yellow solution was stirred at room temperature for 60 h , during which time the crude product precipitated out of solution as a microcrystalline white solid. The solution was concentrated to 15 mL under reduced pressure, the solid was allowed to settle, and the solvent was removed via cannula. The white solid residue was washed with diethyl ether ($2 \times 15 \mathrm{~mL}$, to remove the excess benzoic acid) and dissolved in toluene (20 mL), and the resulting solution was slowly cooled to $-80^{\circ} \mathrm{C}$. Removal of the solvent from the crystals by cannula and drying under reduced pressure resulted in isolation of beige crystals. The mother liquor was concentrated and again cooled to $-80^{\circ} \mathrm{C}$ to yield a second crop of crystals. A third crop was obtained in a similar manner, giving a total yield of 0.41 g

[^15]$(51 \%), \mathrm{mp} 148-155^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 8.70(\mathrm{~m}, 2 \mathrm{H}$, meta- H$)$, $7.21\left(\mathrm{~m}, 3 \mathrm{H}\right.$, ortho/para-H), $2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.81(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.27(\mathrm{~m}, 6 \mathrm{H}), 0.92(\mathrm{~m}, 24 \mathrm{H}) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 74.5\left(\mathrm{~s},{ }^{1} J_{\mathrm{PtP}}=1843 \mathrm{~Hz}\right.$, trans to methyl), $70.1\left(\mathrm{~s},{ }^{1} J_{\mathrm{PtP}}=\right.$ 4025 Hz, trans to benzoate). IR: 1623 s (br), $1575 \mathrm{~s}, 1560 \mathrm{~m}, 1534$ $\mathrm{w}, 1507 \mathrm{w}, 1419 \mathrm{~m}, 1410 \mathrm{~s}, 1386 \mathrm{~s}, 1366 \mathrm{~s}, 1347 \mathrm{~s}, 1320 \mathrm{~m}, 1298 \mathrm{~m}$, $1280 \mathrm{w}, 1258 \mathrm{~m}, 1246 \mathrm{~s}, 1183 \mathrm{~m}, 1172 \mathrm{~m}, 1161 \mathrm{~m}, 1129 \mathrm{~m}, 1107 \mathrm{w}$, $1097 \mathrm{w}, 1080 \mathrm{w}, 1065 \mathrm{~m}, 1033 \mathrm{~s}, 1022 \mathrm{~m}, 994 \mathrm{w}, 965 \mathrm{w}, 940 \mathrm{~m}, 925$ $\mathrm{m}, 884 \mathrm{~s}, 860 \mathrm{~m}, 831 \mathrm{~m}, 793 \mathrm{~m}, 719 \mathrm{~s}, 707 \mathrm{~s}, 690 \mathrm{~s}, 682 \mathrm{~s}, 669 \mathrm{~s}, 651$ $\mathrm{s}, 644 \mathrm{~m}, 614 \mathrm{~m}, 580 \mathrm{w}, 528 \mathrm{~m}, 489 \mathrm{~m}, 469 \mathrm{w}, 456 \mathrm{~m}, 426 \mathrm{~m} \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{P}_{2} \mathrm{O}_{2} \mathrm{Pt}: \mathrm{C}, 44.5 ; \mathrm{H}, 6.79$. Found: $\mathrm{C}, 44.8 ; \mathrm{H}$, 6.82 .
(dippe) $\mathbf{P t}\left(\mathbf{C H}_{3}\right)(\mathbf{H})$ (10). To a stirred thf solution $(50 \mathrm{~mL})$ of (dippe) $\mathrm{Pt}\left(\mathrm{CH}_{3}\right)(\mathrm{OCOPh})(2.00 \mathrm{~g}, 3.40 \mathrm{mmol})$ was added dropwise a thf solution (50 mL) of $\mathrm{NaHB}(\mathrm{OMe})_{3}(1.30 \mathrm{~g}, 10.2 \mathrm{mmol})$. A fine off-white precipitate immediately formed. The suspension was stirred for 12 h , the solvent was removed under reduced pressure, and the residue was extracted into toluene ($2 \times 15 \mathrm{~mL}$). The solution was filtered, the filtrated was concentrated to 15 mL under reduced pressure, and then 50 mL of pentane was added. Slow cooling of the filtrate to $-80^{\circ} \mathrm{C}$ yielded crude 10 as a beige solid. Recrystallization from toluene:pentane ($1: 2$) yielded pure 10 as a pale yellow solid (1.26 g , 79%), mp $63-66^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (toluene- d_{8}): $\delta 2.04(\mathrm{~m}, 4 \mathrm{H}), 1.82$ $(\mathrm{m}, 4 \mathrm{H}), 1.44$ (virtual $\left.\mathrm{t}, 3 \mathrm{H},{ }^{2} J_{\mathrm{PtCH}_{3}}=71 \mathrm{~Hz}\right), 1.08(\mathrm{~m}, 12 \mathrm{H}), 0.82(\mathrm{~m}$, $12 \mathrm{H}), 0.48\left(\mathrm{dd}, 1 \mathrm{H},{ }^{1} J_{\mathrm{PtH}}=1158 \mathrm{~Hz},{ }^{2} J_{\mathrm{P} \text { trans } \mathrm{H}}=201 \mathrm{~Hz},{ }^{2} J_{\mathrm{P} \text { cis } \mathrm{H}}=\right.$ 17.5 Hz) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- d_{8}): $\delta 85.5\left(\mathrm{~s},{ }^{1} \mathrm{~J}_{\mathrm{PtP}}=1822\right.$ Hz , trans to methyl), 70.1 ($\mathrm{s},{ }^{1} J_{\mathrm{PtP}}=1747 \mathrm{~Hz}$, trans to hydride). IR: $1965 \mathrm{~s}(\mathrm{br}), 1408 \mathrm{~m}, 1382 \mathrm{~s}, 1361 \mathrm{~s}, 1296 \mathrm{w}, 1256 \mathrm{~m}, 1237 \mathrm{~m}, 1183 \mathrm{w}$, $1161 \mathrm{w}, 1142 \mathrm{w}, 1103 \mathrm{~m}, 1088 \mathrm{~m}, 1078 \mathrm{~m}, 1031 \mathrm{~s}, 930 \mathrm{~m}, 925 \mathrm{~m}, 885$ $\mathrm{s}, 858 \mathrm{~m}, 805 \mathrm{~m}, 795 \mathrm{~s}, 768 \mathrm{~m}, 722 \mathrm{w}, 697 \mathrm{~s}, 685 \mathrm{~s}, 670 \mathrm{~s}, 649 \mathrm{~s}, 639$ $\mathrm{s}, 608 \mathrm{~m} \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{36} \mathrm{P} 2 \mathrm{Pt}: \mathrm{C}, 38.0 ; \mathrm{H}, 7.66$. Found: $\mathrm{C}, 38.3 ; \mathrm{H}, 7.62$.
(dippe) $\mathbf{P t}\left(\mu-\mathrm{CH}_{3}\right)(\mu-\mathrm{H}) \mathbf{Y b C p}{ }_{2}$ (11). To a toluene solution (15 mL) of $1(0.18 \mathrm{~g}, 0.41 \mathrm{mmol})$ was added dropwise a toluene solution (15 $\mathrm{mL})$ of $10(0.18 \mathrm{~g}, 0.39 \mathrm{mmol})$. The resulting dark brown solution was filtered. Slow cooling of the filtrate to $-40^{\circ} \mathrm{C}$ yielded 11 as gold crystals. Concentration of the mother liquor followed by slow cooling to $-80^{\circ} \mathrm{C}$ gave a second crop of crystals, for a total yield of 0.26 g (70%) , mp $220^{\circ} \mathrm{C}$ (decomposition without melting). The NMR spectra were measured on a sample containing a slight excess of 1. ${ }^{1} \mathrm{H}$ NMR (toluene- d_{8}): $\delta 2.29(\mathrm{~s}, 30 \mathrm{H}), 1.85(\mathrm{~m}, 4 \mathrm{H}), 1.1-0.85(\mathrm{~m}, 16 \mathrm{H}), 0.80-$ $0.60(\mathrm{~m}, 15 \mathrm{H}),-2.65\left(\mathrm{dd}, 1 \mathrm{H},{ }^{1} J_{\mathrm{PtH}}=1034 \mathrm{~Hz},{ }^{2} J_{\mathrm{P} \text { trans } \mathrm{H}}=163 \mathrm{~Hz}\right.$, ${ }^{2} J_{\mathrm{P} \text { cis }}=15 \mathrm{~Hz},{ }^{1} J_{\mathrm{YbH}}=114 \mathrm{~Hz}$) ppm. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- d_{8}): $\delta 81.3$ ($\mathrm{s},{ }^{1} J_{\mathrm{PtP}}=1978 \mathrm{~Hz}$, trans to methyl), 69.2 ($\mathrm{s},{ }^{1} J_{\mathrm{PtP}}=2186 \mathrm{~Hz}$, trans to hydride). IR: $2720 \mathrm{~m}, 1895 \mathrm{~s}(\mathrm{br}), 1404 \mathrm{w}, 1382 \mathrm{~s}, 1366 \mathrm{~s}$, $1252 \mathrm{~m}, 1240 \mathrm{w}, 1190 \mathrm{w}, 1162 \mathrm{w}, 1137 \mathrm{w}, 1106 \mathrm{~m}, 1091 \mathrm{~m}, 1081 \mathrm{~m}$, $1029 \mathrm{~s}, 965 \mathrm{w}, 926 \mathrm{w}, 885 \mathrm{~m}, 859 \mathrm{w}, 797 \mathrm{~m} 706 \mathrm{~m}, 687 \mathrm{~s}, 654 \mathrm{~s}, 619$ $\mathrm{w} \mathrm{cm}{ }^{-1}$. Anal. Caled for $\mathrm{C}_{35} \mathrm{H}_{66} \mathrm{P}_{2} \mathrm{PtYb}: \mathrm{C}, 45.8 ; \mathrm{H}, 7.26$. Found: C, 45.6; H, 7.25.

X-ray Crystal Structure Determinations of 9 and 11. (The X-ray details for 5 are available as supplementary material.) X-ray quality crystals of 9 were grown as described above. Dark green-brown blocks of 11 were grown by layering a pentane solution of 1 on top of a toluene solution of 10 and allowing the resulting solution to stand overnight at room temperature. Crystal data and numerical details of the structure determinations for 9 and 11 are given in Tables $4,5,8$, and 9 . The crystals were placed in Paratone N oil, mounted on the end of a cut quartz capillary tube, and placed under a flow of cold nitrogen on an Enraf-Nonius CAD4 diffractometer. Intensities were collected with graphite-monochromatized Mo $\mathrm{K} \alpha(\lambda=0.71073 \AA)$ radiation using the $\theta-2 \theta$ scan technique. Lattice parameters were determined using automatic peak search and indexing procedures. Intensity standards were measured every hour of data collection.

The raw intensity data were converted to structure factor arnplitudes and their esd's by correction for scan speed, background, and Lorentz and polarization effects. Corrections for crystal decomposition were performed on the data obtained on 9 , but no correction was necessary for the data obtained for 11. A θ-independent absorption correction using the program DIFABS ${ }^{30}$ was applied to the data for 9 and 11, using the isotropic models as a basis for the correction. The structure of 9 was solved by Patterson techniques, while that of 11 was solved
using SHELXS $86,{ }^{63}$ and refined using standard least-squares and Fourier techniques.

The data for 9 at this point (anisotropic model) indicated that placement of the hydrogens based on idealized bonding geometry was justified. These atoms were placed in the idealized positions and included in the structure factor calculation but not refined (all hydrogen atoms were given isotropic thermal parameters $1.2\left(B_{\text {iso }}\right)$ of the carbon to which they were attached). Examination of a difference Fourier map showed five positive peaks of intensity $0.48-0.83 \mathrm{e}_{\AA^{-3} c a .1 .0}$ \AA from the two bridging methyl carbons, oriented roughly tetrahedrally around the carbons. These peaks were assigned as the hydrogen atoms of C 1 and C 2 , with the sixth hydrogen (H 2 C) added on the basis of idealized bonding geometry. These atoms were treated in a manner similar to that of the other hydrogen atoms, above.

The Fourier difference map of the isotropic model for 11, after the absorption correction, revealed several cases of disorder which were modeled as follows: one Cp * ring consists of six carbon atoms, two of which were assigned a multiplicity of 0.5 ; the other $\mathrm{Cp*}$ ring also consists of six carbon atoms, with three adjacent atoms assigned a multiplicity of 0.67 ; there are 10 methyl carbon atoms on each Cp^{*} ring, each of multiplicity 0.5 (a result of two major orientations of the ring, about the ring centroid axis); the $\left(\mathrm{CH}_{2}\right)_{2}$ bridge of the phosphine was modeled as four carbon atoms, each of multiplicity 0.5 (arising from the two possible geometries of this bridge); two of the isopropyl groups of the phosphine were found to be rotationally disordered about the ipso carbon atom, and these were modeled by adding a third methyl carbon and assigning two of the methyl carbons a multiplicity of 0.5 (the third methyl kept at multiplicity 1.0); another of the isopropyl groups of the phosphine was found to be disordered about the $\mathrm{P}-\mathrm{C}_{\mathrm{ipso}}$ bond (a result of two different orientations of this group), and two separate isopropyl groups were used to model this disorder, one of the isopropyl groups assigned a muliplicity of 0.67 and the other a multiplicity of 0.33 .

A θ-independent DIFABS absorption correction was then applied to the raw data, using this improved model as a basis. The model was then refined isotropically and then anisotropically (only the heavy atoms, and the carbon atoms of multiplicity 1.0 (14 of the 35 total carbon atoms) were refined anisotropically). At this point, 16 reflections were rejected on the basis of large $w\left(\Delta^{2}\right)$ values, as well as a trend in $h k l$: they were all of the form $h, 0,0 ; 2 h, h, 0 ; 3 h, h, 0$; etc.; or very nearly so. Analysis of the difference map at this point indicated that inclusion

[^16]of the hydrogen atoms at idealized locations was not justified by the quality of the data, and so no hydrogens were included in the model. No difference peaks near the bridging methyl carbon or near the expected hydride location were present. The most intense difference peak, $6.6 \mathrm{e} \AA^{-3}$, was located near the Pt center. The next most intense peak was $2.3 \mathrm{e} \AA^{-3}$; the top seven most intense peaks (seventh peak $=$ $1.2 \mathrm{e}^{-3}$) were associated with the Pt and Yb centers.

The least-squares program minimized the expression, $\Sigma w\left(\left|F_{0}\right|-\right.$ $\left.\left|F_{c}\right|\right)^{2}$, where w is the weight of a given observation. Values of 0.03 (9) and 0.05 (11) for the p factor were used to reduce the weight of intense reflections in the refinements. The analytical forms of the scattering factor tables for the neutral atoms were used, and all nonhydrogen scattering factors were corrected for both real and imaginary components of anomalous dispersion.

Acknowledgment. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76F00098. We thank the National Science Foundation for a predoctoral fellowship to D.J.S. and Dr. F. J. Hollander for helpful advice concerning X-ray crystallography.

Supplementary Material Available: Crystallographic summary, data, and positional parameters for 5 , complete tables of bond lengths and angles, anisotropic thermal parameters, and root mean square amplitudes of thermal vibration for 9 and 11, NMR spectra for 7 and 11, and an ORTEP diagram of the structure of 11 showing all atoms (59 pages); observed and calculated structure factors for 9 and 11 (65 pages). The following NMR spectra are included: ${ }^{1} \mathrm{H} /{ }^{195} \mathrm{Pt}$ and ${ }^{1} \mathrm{H} /{ }^{171} \mathrm{Yb}$ HMQC spectra of $7\left(300 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}, \mathrm{C}_{6} \mathrm{D}_{6}\right) ;{ }^{1} \mathrm{H} /{ }^{195} \mathrm{Pt} \mathrm{HMQC}$ spectrum of $11\left(300 \mathrm{MHz},-70^{\circ} \mathrm{C}\right.$, toluene $\left.-d_{8}\right) ;{ }^{1} \mathrm{H} /{ }^{31} \mathrm{P}$ HMQC spectrum of $11\left(300 \mathrm{MHz},-70^{\circ} \mathrm{C}\right.$, toluene- $\left.d_{8}\right)$, showing $\mathrm{J}_{\mathrm{YbP}}$ for the phosphorus nucleus trans to the methyl group. This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, can be ordered from the ACS, and can be downloaded from the Internet; see any current masthead page for ordering information and Internet access instructions.

JA943952B

[^0]: * Address correspondence to this author at Chemistry Department, University of California, Berkeley, CA 94720.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, May 15, 1995.
 (1) (a) Andersen, R. A.; Boncella, J. M.; Burns, C. J.; Green, J. C.; Hohl, D.; Rosch, N. J. Chem. Soc., Chem. Commun. 1986, 405. (b) Andersen, R. A.; Boncella, J. M.; Burns, C. J.; Blom, R.; Haaland, A.; Volden, H. V. J. Organomet. Chem. 1986, 312, C49. (c) Andersen, R. A.; Blom, R.; Boncella, J. M.; Burns, C. J.; Volden, H. V. Acta Chem. Scand. 1987, A41, 24. (d) Green, J. C.; Hohl, D.; Rosch, N. Organometallics 1987, 6, 712.
 (2) (a) Burns, C. J.; Andersen, R. A. J. Am. Chem. Soc. 1987, 109, 941. (b) Schumann, H.; Glanz, M.; Winterfeld, J.; Hemling, H.; Kuhn, N.; Kratz, T. Angew. Chem., Int. Ed. Engl. 1994, 33, 1733. (c) Burns, C. J., Andersen, R. A. J. Am. Chem. Soc. 1987, 109, 5853. (d) Burns, C. J.; Andersen, R. A. J. Am. Chem. Soc. 1987, 109, 915.

[^1]: (3) (a) Tilley, T. D.; Andersen, R. A.; Spencer, B.; Ruben, H.; Zalkin, A.; Templeton, D. H. Inorg. Chem. 1980, 19, 2999. (b) Tilley, T. D.; Andersen, R. A.; Spencer, B.; Zalkin, A. Inorg. Chem. 1982, 21, 2647. (c) Tilley, T. D.; Andersen, R. A.; Zalkin, A. Organometallics 1983, 2, 856.
 (4) (a) Kidd, R. G.; Goodfellow, R. J. In NMR and the Periodic Table; Harris, R. K., Mann, B. E., Eds.; Academic Press Inc.: New York, 1978. (b) Avent, A.; Edelman, M. A.; Lappert, M. F.; Lawless, G. A. J. Am. Chem. Soc. 1989, 111, 3423.

[^2]: (5) (a) Berg, D. J.; Burns, C. J.; Andersen, R. A.; Zalkin, A. Organometallics 1989, 8, 1865. (b) Evans, W. J.; Hughes, L. A.; Hanusa, T. P. lbid. 1986, 5, 1285.
 (6) Nolan, S. P.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 8538.
 (7) Green, M. L. H.; Hughes, A. K.; Michaelidou, D. M.; Mountford, P. J. Chem. Soc., Chem. Commun. 1993, 591.
 (8) Yoshida, T.; Yamagata, T.; Tulip, T. H.; Ibers, J. A.; Otsuka, S. J. Am. Chem. Soc. 1978, 100, 2063.
 (9) (a) Green, M.; Howard, J. A. K.; Proud, J.; Spencer, J. L.; Stone, F. G. A.; Tsipis, C. A. J. Chem. Soc., Chem. Commun. 1976, 671. (b) Ciriano, M.; Green, M.; Proud, J.; Spencer, J. L.; Stone, F. G. A.; Tsipis, C. A. J. Chem. Soc., Dalton Trans. 1978, 801. (c) Tulip, T. H.; Yamagata, T.; Yoshida, T.; Wilson, R. D.; Ibers, J. A.; Otsuka, S. Inorg. Chem. 1979, 18. 2239.
 (10) Watson, P. L. J. Chem. Soc., Chem. Commun. 1980, 652.

[^3]: (11) Schwartz, D. J.; Andersen, R. A. J. Am. Chem. Soc. 1995, 117, 4014.
 (12) (a) Bax, A.; Griffey, R. H.; Hawkins, B. L. J. Magn. Reson. 1983, 55, 301. (b) Bax, A.; Subramanian, S. J. Magn. Reson. 1986, 67, 565.
 (13) (a) Emerson, S. D.; Montelione, G. T. J. Am. Chem. Soc. 1992, 114, 354. (b) Griesenger, C.; Sorensen, O. W.; Ernst, R. R. J. Am. Chem. Soc. 1985, 107, 6394.

[^4]: (14) Pregosin, P. S. In Transition Metal Nuclear Magnetic Resonance; Pregosin, P. S., Ed.; Elsevier Science Publishing Co. Inc.: New York, 1991; pp 234-242 and references therein.

[^5]: (15) Bracher, G.; Grove, D. M.; Pregosin, P. S.; Venanzi, L. M. Angew. Chem., Int. Ed. Engl. 1979, 18 , 155.

[^6]: (19) It is known that ${ }^{171} \mathrm{Yb}$ chemical shifts have a large temperature dependence, see ref 4 b .
 (20) van den Hende, J. R.; Hitchcock, P. B.; Lappert, M. F.; Nile, T. A. J. Organomet. Chem. 1994, 472, 79.
 (21) Bell, J. D.; Hall, D.; Waters, T. N. Acta Crystallogr. 1966, 21, 440.
 (22) Pauling, L. In The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; pp 260-261.
 (23) Deacon, G. B.; Dietrich, A.; Forsyth, C. M.; Schumann, H. Angew. Chem., Int. Ed. Engl. 1989, 28, 1370.
 (24) (a) Hofmann, P.; Heiss, H.; Muller, G. Z. Naturforsch. 1987, B42, 395 and references cited therein. (b) Otsuka, S. J. Organomet. Chem. 1980, 200, 191.

[^7]: (25) Reference 17 reports that (dcypp) PtH_{2} exhibits an exchange process between the dihydride and η^{2}-dihydrogen forms, as determined by variable temperature ${ }^{1} \mathrm{H}$ NMR spectroscopy. We have found that, for (dcypp)$\mathrm{Pt}(\mathrm{H})(\mathrm{D}),{ }^{1} \mathrm{~J}_{\mathrm{HD}}$ is $\leq 4 \mathrm{~Hz}$ at $25^{\circ} \mathrm{C}$, using ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectroscopy.
 (26) Hackett, M.; Ibers, J. A.; Whitesides, G. M. J. Am. Chem. Soc. 1988, 110, 1436.
 (27) Barnett, B. L.; Kruger, C.; Tsay, Y.-H. Chem. Ber. 1977, 110, 3900.

[^8]: (28) We have also tried using fluorinated hydrocarbon solvents and fluorocarbon/toluene solvent mixtures with toluene; however, these attempts have thus far been unsuccessful due to either low solubility of 9 in these solvents or low solubility of these solvents in toluene.
 (29) Barnhart, D. M.; Clark, D. L.; Gordon, J. C.; Huffman, J. C.; Watkin, J. G.; Zwick, B. D. J. Am. Chem. Soc. 1993, 115, 8461. This article reports that the solid- and solution-state IR spectra of $\mathrm{Ln}_{4}\left(\mathrm{OCH}_{2}{ }^{\mathrm{L}} \mathrm{Bu}\right)_{12}(\mathrm{Ln}=\mathrm{La}$, Nd) contain low-frequency $\mathrm{C}-\mathrm{H}$ stretches characteristic of $\mathrm{Ln}-\mathrm{H}-\mathrm{C}$ interactions.
 (30) Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39, 158.

[^9]: (31) (a) Kirchner, R. M.; Little, R. G.; Tau, K. D.; Meek, D. W. J. Organomet. Chem. 1978, 149, C15. (b) Wisner, J. M.; Bartczak, T. J.; Ibers, J. A. Organometallics 1986, 5, 2044.

[^10]: (32) (a) Tilley, T. D.; Andersen, R. A.; Zalkin, A. J. Am. Chem. Soc. 1982, 104, 3725 and references cited therein. (b) Stults, S. D.; Andersen, R. A.; Zalkin, A. J. Organomet. Chem. 1993, 462, 175.
 (33) Holton, J.; Lappert, M. F.; Ballard, D. G. H.; Pearce, R.; Atwood, J. L.; Hunter, W. E. J. Chem. Soc., Chem. Commun. 1976, 480.

[^11]: (34) de Graaf, W.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; Koten, G.

[^12]: (35) Hackett, M.; Whitesides, G. M. J. Am. Chem. Soc. 1988, 110, 1449.
 (36) Alcock, N. W.; Brown, J. M.; MacLean, T. D. J. Chem. Soc., Chem. Commun. 1984, 1689.

[^13]: (38) Hackett, M.; Ibers, J. A.; Jernakoff, P.; Whitesides, G. M. J. Am. Chem. Soc. 1986, 108, 8094. This paper reports that, for the solid-state structure of (dcype) $\mathrm{Pt}\left(\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}(\mathrm{H})\right.$, the $\mathrm{Pt}-\mathrm{P}$ distances are 2.278(2) \AA (trans to hydride) and 2.253(2) \AA (trans to alkyl group), respectively.

[^14]: (60) Pregosin, P. S. In Annual Reports on NMR Spectroscopy; Webb, G. A., Ed.; Academic Press Inc.: London, 1986; Vol. 17.

[^15]: (61) cis-(dcype) PtH_{2} (4) and cis-(dcypp) PtH_{2} (6) were prepared via the procedure described in ref 8; the spectroscopic properties of both complexes were identical to those reported in ref 17.
 (62) Clark, H. C.; Manzer, L. E. J. Organomet. Chem. 1973, 59, 411.

[^16]: (63) Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467.

